Comparison of Survival among Older Adults with Kidney Failure Treated versus Not Treated with Chronic Dialysis

H. TAM-THAM1, RR QUINN2, RG WEAVER1, J. ZHANG2, C. THOMAS3, K. KING-SHIER2, K. FRIETEL2 and BR HEMMELGARN1,3
1Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Alberta, Canada
2Department of Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada
3Faculty of Nursing, University of Calgary, Alberta, Canada

INTRODUCTION
Treatment for older adults with kidney failure generally includes chronic dialysis or non-dialysis care.

Prior studies comparing survival among dialysis and non-dialysis care have been limited by the following: 1,2
- Single-center studies managed by nephrology teams
- Considerable differences in baseline characteristics
- Potential for lead-time and immortal time biases

AIM
To compare time-to-all-cause mortality among older adults with kidney failure treated versus not treated with chronic dialysis, addressing treatment-selection, lead-time, and immortal time biases.

METHODS
- We used linked administrative and laboratory databases to identify adults aged ≥65 in Alberta with kidney failure from 2002-2012.
- Kidney failure defined by ≥2 consecutive outpatient eGFR measurements of <10 ml/min/1.73m² spanning a period of ≥90 days (figure 1).
- Cox regression modeling with propensity score matching to account for baseline demographic and comorbid differences.
- A time-varying exposure was used to address immortal time bias.

RESULTS
- 838 patients met cohort inclusion criteria (figure 2).
- 396 (47.3%) were included in the final propensity score matched cohort.
- The balance of covariates between the two groups improved after propensity score matching (table 1).
- The mean standardized differences in covariates decreased from 22.5% (range 0.2 to 99.9%) before matching to 2.8% (0.0 to 9.1%) after matching, achieving balance across all included covariates (figures 3 and 4).
- Mean age 80.4, 44.7% male, mean eGFR 7.8 ml/min/1.73m².

Table 1. Baseline characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Dialysis</th>
<th>Non-dialysis</th>
<th>Standardized difference (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dialysis</td>
<td>Non-dialysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N=396</td>
<td>N=442</td>
</tr>
<tr>
<td>Male</td>
<td>273 (69)</td>
<td>223 (50)</td>
<td>30.3</td>
</tr>
<tr>
<td>Mean age (SD)</td>
<td>76.3 (6.4)</td>
<td>83.2 (7.2)</td>
<td>-99.9</td>
</tr>
<tr>
<td>Mean eGFR at index (SD)</td>
<td>7.8 (1.4)</td>
<td>7.7 (1.6)</td>
<td>3.6</td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dementia</td>
<td>26 (6.2)</td>
<td>82 (24.3)</td>
<td>-55.8</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>74 (18.1)</td>
<td>68 (20.1)</td>
<td>14.0</td>
</tr>
<tr>
<td>Diabetes</td>
<td>273 (69)</td>
<td>173 (42)</td>
<td>8.8</td>
</tr>
<tr>
<td>Hypertension</td>
<td>482 (96)</td>
<td>308 (91.4)</td>
<td>20.9</td>
</tr>
</tbody>
</table>

- Compared to non-dialysis, there was a reduction in risk of death among those treated with dialysis within the first 3 years of follow-up: HR 0.55 (95% CI 0.41 to 0.74).
- However, after 3 years, dialysis no longer conferred a survival advantage: HR 2.30 (95% CI 1.11 to 4.81) (figure 5).
- The results were robust in a number of sensitivity analyses:
 - Excluding patients with late referral to a nephrologist
 - Excluding patients not referred to a nephrologist
 - Excluding patients with improved kidney function post-cohort entry

REFERENCE

CONCLUSIONS
- Among older adults with kidney failure defined by sustained eGFR <10 ml/min/1.73m², dialysis may confer a reduced risk of all-cause mortality within the first 3 years of treatment.
- The information generated about survival regarding early mortality may support shared treatment decision-making within nephrology and primary care settings when managing older adults with kidney failure.

STRENGTHS & LIMITATIONS
- We used a population-based cohort, and were able to account for clinically important baseline characteristics.
- Using an eGFR-based algorithm to identify does not fully address lead-time bias, and potential for misclassification bias.

REFERENCES

ACKNOWLEDGEMENTS
H.T. is supported by the Alberta Innovates – Graduate Studentship in Health and the Interdisciplinary Chronic Disease Collaboration.

CONTACT INFORMATION
Helen Tam-Tham MsC, PhD Candidate, University of Calgary Room 0236, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N2
Tel: 1-403-210-6961 | E tamh@ucalgary.ca

INDEXED IN
AKDN Alberta Kidney Disease Network