2010 Report on Cancer Statistics in Alberta
Acknowledgements

This report was made possible through Alberta Health Services, Cancer Care, Cancer Surveillance and the many contributions of staff and management across Alberta Health Services as well as external agencies and individuals.

The authors wish to thank individuals working in the following AHS departments and partner agencies for their contributions to this report: Alberta Cancer Registry, Surveillance and Health Status Assessment, Alberta Health and Statistics Canada. Contributions included provision of information, analysis and interpretation, and assistance with consultation sessions and communication of the report.

- **Report Editor:**
 Dr. Juanita Hatcher, Director, Cancer Surveillance

- **Project Coordinator:**
 Barry Obondo, Information Dissemination Coordinator

- **Analysis and Review:**
 Amy Colquhoun, Epidemiologist
 Halim Elamy, Surveillance Analyst
 Li Huang, Senior Surveillance Analyst
 Anthony Karosas, Surveillance Analyst
 Dr. Fengxiao Li, Survey Analyst
 Andrew Min, Assistant Programmer Analyst
 Chris Normandeau, Project Lead
 Tyler Pittman, Survey Analyst
 Dr. Zhenguo Qiu, Biostatistician
 Marjan Rekabdar, Surveillance Analyst
 Janine Schouten, Environmental Exposure Analyst
 Mengzhe Wang, Manager, Analytical Team
 Jing Yang, Clinical Data Analyst
 Yufei Zheng, Surveillance Analyst Practicum Student

- **Design Assistance:**
 Ashley Lakusta, Administrative Support III

Suggested Citation:

For More Information:
Visit our website: http://www.albertahealthservices.ca/1703.asp
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose of the Report</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Navigating the Report</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Data Notes</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>Summary</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Probability of Developing and Dying from Prostate Cancer</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>Potential Years of Life Lost</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
Purpose of the Report

Cancer Surveillance is a specialized team within Alberta Health Services, Cancer Care, that actively contributes to Alberta Health Service’s goal of creating the best-performing publicly funded health system in Canada. This is accomplished by conducting cancer surveillance through the collection, integration, analysis and dissemination of cancer related data and information.

The report is designed to provide comprehensive and detailed information regarding cancer in Alberta. It will help support health professionals, researchers and policy makers in the planning, monitoring and evaluation of cancer-related health programs and initiatives. It will also be a useful education tool for the general public and media.

Navigating the Report

This document provides information on cervical cancer statistics in Alberta. Details about individual cancer types are available within separate documents. The words highlighted in dark blue are terms described in detail in the Glossary within the Appendix document.

Data Notes

In this document, the term “cancer” refers to invasive cancers unless otherwise specified. It is important to note that this document contains both actual and estimated data; distinctions are made where applicable. The numbers published in this report should be considered provisional, as a few cases and deaths may be registered in subsequent years. The data in this report reflect the state of the Alberta Cancer Registry as of July 31, 2012.

For detailed descriptions about data sources and how they affect data presented in this report, please see the Appendix document.
Summary

- Approximately 1 in 123 women will develop cervical cancer within their lifetime.
- In 2010, 834 potential years of life were lost due to cervical cancer.
- As of December 31, 2010, approximately 3,200 Albertans were living with cervical cancer.
- From 1990 to 2010*, cervical cancer incidence rates have decreased.
- From 1990 to 2010*, cervical cancer mortality rates have decreased.
- In 2010, there were 150 new cases of cervical cancer in Alberta and 33 deaths due to the disease.
- Approximately 180 cases of cervical cancer are expected to be diagnosed in 2015.
- The five-year relative survival ratio for cervical cancer in Alberta is approximately 81% for those diagnosed between 2008 and 2010.

*Year range represents the period over which the most recent significant trend was observed.
Probability of Developing and Dying from Cervical Cancer

The probability of developing or dying of cancer measures the risk of an individual in a given age range developing or dying of cancer, and is conditional on the person being cervical cancer-free prior to the beginning of that age range. It is important to note that the probabilities of developing and dying of cancer represent all of Alberta’s population on average and should be interpreted with caution at the individual level as the probabilities will be affected by the risk behaviours of the individual. In addition, someone diagnosed with cancer has a higher probability of developing another cancer in the future.\(^1\)

The probability of developing cervical cancer increases with age (Table 12-1). Approximately 1 in 123 females will develop invasive cervical cancer in their lifetime.

On a population basis the probability of developing cervical cancer by the end of the age range for a cervical cancer-free individual at the beginning of the age range are shown in the bottom eight rows of Table 12-1. For instance, a cervical cancer-free female representative of the general population at age 40 has a 1 in 591 chance of developing cervical cancer by the time she is 50. Females in the 40-50 age range are most likely to be diagnosed with cervical cancer.

The probability of dying from cervical cancer increases with age (Table 12-2). Approximately 1 in 454 females will die of invasive cervical cancer.

On a population basis the probability of a cancer-free individual at the beginning of the age range dying from cervical cancer by the end of the age range are shown in the bottom eight rows of Table 12-2. For example, a cancer-free female representative of the general population at age 40 has a 1 in 3,336 chance of dying from cervical cancer by the time she is 50.

\(\text{Table 12-1: Probability of Developing Cervical Cancer by Age, Alberta, 2006-2010}\)

<table>
<thead>
<tr>
<th>Age Group (Years)</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifetime Risk (all ages)</td>
<td>1 in 123</td>
</tr>
<tr>
<td>0 - 20</td>
<td>Less than 1 in 10,000</td>
</tr>
<tr>
<td>20 - 30</td>
<td>1 in 1,488</td>
</tr>
<tr>
<td>30 - 40</td>
<td>1 in 606</td>
</tr>
<tr>
<td>40 - 50</td>
<td>1 in 591</td>
</tr>
<tr>
<td>50 - 60</td>
<td>1 in 729</td>
</tr>
<tr>
<td>60 - 70</td>
<td>1 in 756</td>
</tr>
<tr>
<td>70 - 80</td>
<td>1 in 1,155</td>
</tr>
<tr>
<td>80+</td>
<td>1 in 761</td>
</tr>
</tbody>
</table>

\(\text{Data Sources: Alberta Cancer Registry, Alberta Health}\)

\(\text{Table 12-2: Probability of Dying from Cervical Cancer by Age, Alberta, 2006-2010}\)

<table>
<thead>
<tr>
<th>Age Group (Years)</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifetime Risk (all ages)</td>
<td>1 in 454</td>
</tr>
<tr>
<td>0 - 20</td>
<td>Less than 1 in 10,000</td>
</tr>
<tr>
<td>20 - 30</td>
<td>Less than 1 in 10,000</td>
</tr>
<tr>
<td>30 - 40</td>
<td>1 in 7,311</td>
</tr>
<tr>
<td>40 - 50</td>
<td>1 in 3,336</td>
</tr>
<tr>
<td>50 - 60</td>
<td>1 in 2,618</td>
</tr>
<tr>
<td>60 - 70</td>
<td>1 in 2,367</td>
</tr>
<tr>
<td>70 - 80</td>
<td>1 in 2,054</td>
</tr>
<tr>
<td>80+</td>
<td>1 in 1,215</td>
</tr>
</tbody>
</table>

\(\text{Data Sources: Alberta Cancer Registry, Alberta Health}\)
Potential Years of Life Lost

One frequently used measure of premature death is potential years of life lost (PYLL). PYLL due to cancer is an estimate of the number of years that people would have lived had they not died from cancer. PYLL due to cancer has been calculated by multiplying the number of deaths in each age group and the absolute difference between the mid-point age of an age group and the age-specific life expectancy. The age-specific life expectancy is calculated by determining the age to which an individual would have been expected to live had they not died from cancer. PYLL is one way to measure the impact, or burden, of a disease on a population.

Figure 12-1: Potential Years of Life Lost (PYLL) from Cervical Cancer Compared with Lung †, Colorectal †, Breast ‡ and Prostate Cancers, Alberta, 2010

Data Source: Alberta Cancer Registry

In 2010, 834 potential years of life were lost due to cervical cancer, which constitutes about 1% of PYLL for all cancers (Figure 12-1).
Prevalence

The prevalence of a disease is defined as the number of people alive at a given time point who had been previously diagnosed with that disease.

Limited-duration cervical cancer prevalence represents the number of people alive on a certain day who had previously been diagnosed with cervical cancer within a specified time period (e.g. 2, 5, 10 or 20 years) while complete cervical cancer prevalence represents the number of people alive on a certain day who had previously been diagnosed with cervical cancer, regardless of how long ago the diagnosis was.²

In this section of the report, both limited-duration and complete cervical cancer prevalence are presented; the latter describing the number of people alive as of December 31, 2010 who had ever been diagnosed with cervical cancer.

Prevalence is a useful indicator of the impact of cancer on individuals, the healthcare system and the community as a whole. Although many cancer survivors lead healthy and productive lives, the experience can have a strong impact on the physical and emotional well-being of individuals and their families. The cancer experience can also result in the continued use of the healthcare system through rehabilitation or support services, as well as loss of work productivity that can affect the whole community.

Table 12-3: Limited-Duration and Complete Prevalence for Cervical Cancer, Alberta, 2010

<table>
<thead>
<tr>
<th>Duration</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Year</td>
<td>290</td>
</tr>
<tr>
<td>5-Year</td>
<td>646</td>
</tr>
<tr>
<td>10-Year</td>
<td>1,200</td>
</tr>
<tr>
<td>20-Year</td>
<td>2,027</td>
</tr>
<tr>
<td>Complete</td>
<td>3,178</td>
</tr>
</tbody>
</table>

Data Source: Alberta Cancer Registry

As of December 31, 2010, approximately 3,200 Albertans were alive who had previously been diagnosed with cervical cancer (Table 12-3), out of which approximately 290 Albertans were alive on the same date who had been diagnosed with cervical cancer in the previous two years, the period during which cases are more likely to receive definitive treatments.
Cervical Cancer Incidence and Mortality

Incidence counts are the number of new cancer cases diagnosed during a specific time period in a specific population. In this section of the report, incidence counts refer to the number of new cervical cancer diagnoses in Albertan residents in a calendar year. Incidence rates are the number of new cervical cancer cases diagnosed per 100,000 population in a specific time period.

Mortality counts describe the number of deaths attributed to cancer during a specific period of time in a specific population. In this section of the report, mortality refers to the number of deaths due to cervical cancer in Albertan residents in a calendar year, regardless of date of diagnosis. Mortality rates are the number of deaths per 100,000 population in a specific time period.

In order to compare cancer incidence or cancer mortality over time or between populations, **age-standardized incidence rates (ASIRs)** or **age-standardized mortality rates (ASMRs)** are presented. These are weighted averages of **age-specific rates** using a standard population to determine the weights. These rates are useful because they are adjusted for differences in age distributions in a population over time, which permit comparisons of cancer incidence or mortality among populations that differ in size, structure and/or time period. ASIRs and ASMRs give the overall incidence and mortality rates that would have occurred if the population of Alberta had been the same as the standard population. In this report the Canadian 1991 population is used as the standard population.

Three-year moving averages are used to smooth out year-to-year fluctuations so that the underlying trend may be more easily observed. They are calculated based on aggregating three years of data by age group. Age-standardized incidence rates (ASIRs) and age-standardized mortality rates (ASMRs) are presented as three-year moving averages. This smoothing of trends is especially important when the number of cancer cases per year is relatively small, where year-to-year variability can be quite large.

Incidence and mortality can be affected by a variety of factors; implementation of public health prevention or screening strategies that either prevent disease or find cancer in its early **stages** when treatment is generally more successful, the development of cancer treatment programs that may impact chances of survival and research innovations.

The following figures show incidence and mortality trends for cervical cancer in Alberta. Separate analyses for both incidence and mortality are shown in subsequent sections. The statistical significance of the trends was determined by using Joinpoint\(^3\) method and is described in the text accompanying each graph. Joinpoint models are based on yearly rates; hence there may be slight differences in the rates presented in the text (from Joinpoint model) and the graphs (where ASIRs and ASMRs are shown as three-year moving averages).
Cervical Cancer Incidence

The following two figures (*Figures 12-3 to 12-4*) provide information on cervical cancer incidence in Alberta. The number of new cancer cases in Alberta is affected not only by changes in the incidence rates, but also by the changes in the age structure and growth of the population. In order to compare trends over time, age-standardized incidence rates (ASIRs) are also provided.

In *Figure 12-3* observed age standardized incidence rates are shown for 1990-2009, and *projected* rates for 2010-2015, and observed numbers of new cervical cancer cases are shown for the years 1990-2010 and projected numbers for 2011-2015.

The projected cancer numbers were calculated by applying the estimated age-specific cancer incidence rates to the projected age-specific population figures provided by Alberta Health. These were observed up to 2009 and estimated for 2010-2015. Caution should be exercised when comparing Canada and Alberta rates as Canadian rates are yearly rates while Alberta rates are three-year moving averages.

The estimated cervical cancer incidence rates were calculated by extrapolating the historical trends in age-specific rate based on data for 1985-2009.

Data Sources: Alberta Cancer Registry, Alberta Health

Cervical cancer ASIRs decreased significantly between 1990 and 2010 by 1.2% annually (*Figure 12-2*). In 2010, the ASIR for cervical cancer was 8 per 100,000 female population.

Cervical cancer mortality rates are lower than incidence rates (*Figure 12-2*). Cervical cancer ASMRs decreased significantly between 1990 and 2010 by 2.8% annually. In 2010, the ASMR for cervical cancer was 2 per 100,000 female population.
Cervical cancer affects females at a younger age than many other cancers. Cervical cancer incidence begins rising at the age of 20, peaking at 40, then slowly declines (Figure 12-4).

In 2010, 150 cervical cancer cases were diagnosed in Alberta (Figure 12-3). Alberta ASIRs for cervical cancer in Alberta were generally higher than those in Canada.

Approximately 180 cases of cervical cancer will be diagnosed in Alberta in 2015.
Cervical Cancer Mortality

The following two figures (Figures 12-5 to 12-6) provide information on cervical cancer mortality in Alberta. The number of deaths in Alberta is affected not only by changes in the mortality rates, but also by the changes in the age structure and growth of the population. In order to compare trends over time, age-standardized mortality rates (ASMRs) are also provided.

In Figure 12-5 observed age standardized mortality rates are shown for 1990-2009, and projected rates for 2010-2015, and observed numbers of cancer deaths are shown for the years 1990-2010 and projected numbers for 2011-2015.

The projected numbers of cancer deaths were calculated by applying the estimated age-specific cancer mortality rates to the age-specific population figures provided by Alberta Health. These were observed up to 2009 and estimated for 2010-2015. Caution should be exercised when comparing Canada and Alberta rates as Canadian rates are yearly rates while Alberta rates are three-year moving averages.

The estimated cervical cancer mortality rates were calculated by extrapolating the historical trends in age-specific rate based on data in 1985-2009.

In 2010, 33 females died from cervical cancer in Alberta (Figure 12-5). Alberta ASMRs were generally higher than those in Canada.

Approximately 40 females are expected to die from cervical cancer in Alberta in 2015.
Cervical cancer mortality rates increase gradually after about the age of 20 (Figure 12-6). The highest cervical cancer mortality rates occur in the older age groups.
Cervical Cancer Survival

Cancer survival ratios indicate the proportion of people who will be alive at a given time after they have been diagnosed with cancer. Survival is an important outcome measure and is used for evaluating the effectiveness of cancer control programs.

Survival depends on several factors including the cancer type (most importantly site, morphology and stage at diagnosis), sex, age at diagnosis, health status and available treatments for that cancer. While relative survival ratios (RSRs) give a general expectation of survival over the whole province, these ratios may not apply to individual cases. Individual survival outcomes depend on the stage at diagnosis, treatment and other individual circumstances.

Relative survival ratios are estimated by comparing the survival of cancer patients with that expected in the general population of Albertans of the same age, sex and in the same calendar year to obtain a crude estimate.

RSRs are estimated by the cohort method when complete follow-up data (e.g., at least five years of follow-up to estimate five-year rate) after diagnosis are available. For recently diagnosed cases, whose complete follow-up data are not available, the up-to-date estimates are computed using the period method. However, comparison between cohort and period RSRs should be interpreted with caution because of the two different methods used to derive the respective ratios.

Relative survival ratio is usually expressed as a percentage (%) and the closer the value is to 100%, the more similar the survival pattern is to the general population.

Figure 12-7: One, Three and Five-Year Relative Survival Ratios and 95% Confidence Intervals (CI) for Cervical Cancer, Alberta, 1991-1993*, 1998-2000† and 2008-2010

The five-year relative survival ratio for females diagnosed with cervical cancer in the period 2008-2010 is an estimated 81% indicating that out of all females diagnosed with this cancer between 2008 and 2010, around 81% are as likely to be alive five years after diagnosis as females from the general population.

The five-year relative survival ratio for females diagnosed with cervical cancer in Alberta has improved in 2008-2010 compared to those diagnosed in 1991-1993 (Figure 12-7).

Data Sources: Alberta Cancer Registry, Statistics Canada
Further Information

Further information is available on a separate document, the Appendix:

- **Appendix 1**: Glossary
- **Appendix 2**: Cancer Definitions
- **Appendix 3**: Data Notes
References

