

Systemic Therapy for Cutaneous Melanoma

Effective Date: January 2026

Background

Cutaneous melanoma is an aggressive skin cancer originating from melanocytes. In Alberta, incidence rates increased from 2001 to 2019 by 2.4% annually in males and 2.3% in females.¹ In 2021, there were 1,115 new cases and 96 deaths in Alberta.¹ If trends continue, approximately 1,360 new cases are expected to be diagnosed in 2026.¹ Although mortality has remained stable between 2001 and 2021, five-year relative survival had increased from ~84% for cases diagnosed between 2001-2003 to ~91% for cases diagnosed between 2019 and 2021.¹ Ultraviolet (UV) radiation from sun or artificial sources (e.g., tanning beds) is the leading cause. Most cutaneous melanomas develop on the head, neck and trunk in males, and on upper and lower extremities in females.²

Surgery with curative intent is the standard of care for stage I-II melanoma. For most patients with stage III melanoma (i.e., those with nodal disease and rarely for in-transit metastasis), complete lymph node dissection (CLND) is no longer the standard after a positive sentinel lymph node biopsy (SLNB). Patients with regional lymph node involvement, particularly those with high-risk features in the primary tumour (i.e., increasing tumour thickness, presence of ulceration, microsatellosis), are at increased risk for recurrent disease and should be considered for adjuvant and/or neoadjuvant therapy.

Adjuvant therapy aims to improve recurrence-free survival (RFS) and overall survival (OS) in high-risk patients. Immunotherapies (e.g., checkpoint inhibitors) and targeted therapies are now standard of care.³ More recently, neoadjuvant approaches have become available, demonstrating event-free survival (EFS) benefit through their capacity to take advantage of the intact tumour's antigenic environment, which potentially enhances immune activation and reduces tumor burden prior to resection.³⁻⁵ Neoadjuvant therapy might also reduce the need for extensive adjuvant treatment and associated treatment toxicities.³

Metastatic melanoma accounts for less than 5% of all cases of melanoma and is associated with a lower rate of survival at 5 years (37%).⁶ Common sites of metastases include regional (i.e., in-transit metastasis) and distant skin, lymph nodes, liver, lungs, brain, bone and GI tract. While surgery is still a reasonable treatment option for patients with a solitary resectable metastatic deposit, systemic therapy is used to manage virtually all patients with metastatic disease, regardless of resectability. Optimal selection of systemic agents depends on the mutation status of the tumour, tumour volume and rate of progression, symptoms and patient performance status. Certain agents may be better suited for selected subgroups of patients.

Guideline Questions

In patients with high-risk cutaneous melanoma who have undergone or are eligible for resection:

1. When and for whom is neoadjuvant therapy indicated?
2. When and for whom is adjuvant immunotherapy indicated?
3. When and for whom is adjuvant targeted therapy indicated?

In patients with metastatic cutaneous melanoma:

4. Which agents should be used as first-line therapy?
5. Which agents should be used as second- or third-line therapy?

Search Strategy

The Medline/EBSCO database was searched for relevant studies focusing on neoadjuvant and adjuvant systemic therapies for high-risk disease. Results were limited to clinical trials and randomized controlled trials, in English language, published between January 1, 2015, and May 22, 2025. Specific search strategy and search results are presented in the Evidence Table, and available upon request. Of the 291 studies identified, 58 were included after screening (15 neoadjuvant, 43 adjuvant). Online resources from oncology-based health organizations and guideline developers were also systematically searched. Specifically, guidelines from the American Society of Clinical Oncology (ASCO), European Society for Medical Oncology (ESMO), and Scottish Intercollegiate Guidelines Network (SITC) were consulted to identify landmark studies on systemic treatment for metastatic disease.⁷⁻⁹ The Canada's Drug Agency's (CDA) report on the melanoma provisional funding algorithm was also considered in developing our recommendations.¹⁰

Target Population

The recommendations outlined in this guideline apply to adults over the age of 18 years with high-risk cutaneous melanoma who have undergone or are eligible for complete resection, and adults over the age of 18 years with unresectable metastatic melanoma without involvement of the central nervous system (CNS). Different principles may apply to pediatric patients. This guideline does not include recommendations for the management of in-transit and uveal melanomas. Given the limited evidence specifically guiding the treatment of cutaneous mucosal, and acral melanomas, these recommendations may be applied to these subtypes.

Recommendations

Neoadjuvant Therapy

1. For patients with clinically detected (physical examination or imaging) nodal disease planned for surgical resection (including stage III disease with nodal involvement and limited satellite or in-transit metastases, as well as selected patients with resectable stage IV disease), who have not previously received immunotherapy, pembrolizumab or ipilimumab-nivolumab*, surgery is generally recommended (*Level of Evidence: II^{11, 12}; Strength of Recommendation: A*).

* Ipilimumab-nivolumab is not provincially funded in the neoadjuvant setting ([AHS OCDBP](#), as of August 27, 2025).

- 1.1. Following neoadjuvant pembrolizumab, adjuvant pembrolizumab after resection to complete 1 year of pembrolizumab treatment in total is recommended, as per the SWOG S1801 protocol, even for patients who achieve a major pathological response ($\leq 10\%$ residual viable tumor), a subgroup which has improved RFS¹³ (*Level of Evidence: II*¹²; *Strength of Recommendation: B*). For patients with *BRAF* mutated disease, switching to adjuvant *BRAF*/MEK targeted therapy may be considered, particularly if patients progress during neoadjuvant immunotherapy, experience immunotherapy-related toxicity and/or lack of pathological response (*Level of Evidence: V*; *Strength of Recommendation: B*).
- 1.2. Following neoadjuvant ipilimumab-nivolumab, no further adjuvant treatment is indicated if a major pathological response ($\leq 10\%$ residual viable tumor) is achieved, as per the NADINA protocol. If no major pathological response is achieved, adjuvant nivolumab (*BRAF* wild type) or dabrafenib-trametinib (*BRAF* mutation) is indicated as per NADINA protocol (*Level of Evidence: III*¹¹; *Strength of Recommendation: B*). Switching to adjuvant *BRAF*/MEK targeted therapy may also be considered in the instances described above (*Level of Evidence: V*; *Strength of Recommendation: B*).

Adjuvant Therapy

2. For patients with completely resected stage IIB or IIC who have not previously received systemic treatment, nivolumab or pembrolizumab are recommended (*Level of Evidence: I*¹⁴⁻²⁰; *Strength of Recommendation: B*).
3. For patients with completely resected stage III who have not previously received systemic treatment, or who progressed ≥ 6 mo after treatment with a PD-1 inhibitor, pembrolizumab or nivolumab are recommended (*Level of Evidence: I*²¹⁻²⁶; *Strength of Recommendation: A*). Targeted therapy should be considered for patients with contraindications to immunotherapy or those with very high-risk disease.
4. For patients with completely resected stage III with *BRAF*-mutations who have not previously received systemic treatment, or who progressed ≥ 6 mo after treatment with a PD-1 inhibitor, dabrafenib-trametinib (*Level of Evidence: I*²⁷⁻³⁰ *II*³¹; *Strength of Recommendation: A*) can be recommended as an alternative to pembrolizumab or nivolumab, with no clear evidence of superiority of one approach over the other. Encorafenib-binimatinib[†] may be considered as well (*Level of Evidence: V*; *Strength of Recommendation: C*).

[†] Encorafenib-binimatinib is not provincially funded in the adjuvant setting ([AHS OCDBP](#), as of August 27, 2025).

5. For patients with completely resected stage IV, nivolumab monotherapy or ipilimumab-nivolumab for four cycles followed by nivolumab maintenance[‡] can be considered as adjuvant therapy (*Level of Evidence: II*^{32, 33}; *Strength of Recommendation: C*).

Metastatic Disease

6. Systemic therapy is not recommended for patients with metastatic or advanced disease who have progressed after ≥ 2 prior lines of therapy and have a life expectancy of less than 3 months, despite available treatment options. Indicators of this poor prognosis are tumour site-specific but usually include ECOG 3-4, jaundice, leptomeningeal disease, hypercalcemia, rising LDH $> 5 \times \text{ULN}$, severe pancytopenia.
7. For patients with *BRAF* mutant metastatic melanoma who either have never received adjuvant PD-1 therapy or relapsed with distant metastatic disease ≥ 6 months after completion of adjuvant PD-1 therapy, first-line treatment options are: nivolumab-relatlimab, pembrolizumab, nivolumab, ipilimumab-nivolumab followed by nivolumab maintenance, and *BRAF*-targeted therapy[§] (*Level of Evidence: I*³⁴⁻⁴¹ *II*^{31, 42, 43}; *Strength of Recommendation: A*).

In treatment-naïve patients with *BRAF*-mutant disease, first-line immunotherapy is preferred over targeted therapy (*Level of Evidence: II*⁴⁴⁻⁴⁶; *Strength of Recommendation: B*). There are no randomized comparative data demonstrating superiority of ipilimumab–nivolumab over nivolumab–relatlimab; but longer follow-up is available for ipilimumab–nivolumab.^{36, 40}

- 7.1. Following first line nivolumab-relatlimab, second line options can be ipilimumab^{**} or *BRAF*-targeted therapy[§].
- 7.2. Following first-line ipilimumab-nivolumab then nivolumab maintenance, second line option is *BRAF*-targeted therapy[§].
- 7.3. Following first line pembrolizumab or nivolumab, the second line options can be ipilimumab-nivolumab with nivolumab maintenance^{**}, *BRAF*-targeted therapy[§], or ipilimumab monotherapy^{**}.
- 7.4. Following first line *BRAF*-targeted therapy, second-line options include pembrolizumab, nivolumab, nivolumab-relatlimab, ipilimumab-nivolumab then nivolumab maintenance^{**}, or ipilimumab monotherapy^{**}.

[‡] Ipilimumab-nivolumab is not provincially funded in the adjuvant setting ([AHS OCDBP](#), as of August 27, 2025).

[§] *BRAF*-therapy options (V600E and/or V600K mutations) include dabrafenib-trametinib and encorafenib-binimatinib

^{**} Ipilimumab and ipilimumab-nivolumab are not provincially funded for second-line treatment in the metastatic setting ([AHS OCDBP](#), as of August 27, 2025).

7.5. Third-line treatment rechallenge with the drug class not used in the immediate previous line can be considered.

8. For patients with *BRAF* mutant metastatic melanoma who relapsed with distant metastatic disease during adjuvant PD-1 therapy or <6 months after completion, first-line treatment options are ipilimumab-nivolumab then nivolumab maintenance and *BRAF* targeted therapy[§] (*Level of Evidence: II*^{44, 45, 47}; *Strength of Recommendation: B*). Nivolumab-relatlimab^{††} may be considered (*Level of Evidence: V*⁴⁸; *Strength of Recommendation: C*).

- 8.1. Following first-line ipilimumab-nivolumab then nivolumab maintenance, second line option is *BRAF*-targeted therapy[§].
- 8.2. Following first-line *BRAF*-targeted therapy, second-line options are ipilimumab-nivolumab then nivolumab maintenance^{‡‡} or ipilimumab monotherapy^{‡‡}.

9. For patients with *BRAF* mutant metastatic melanoma who relapsed with distant metastatic disease during adjuvant targeted therapy or <6 months after completion, first-line treatment options are in no preferred order: ipilimumab-nivolumab then nivolumab maintenance, pembrolizumab^{§§}, nivolumab^{§§}, and nivolumab-relatlimab^{§§} (*Level of Evidence: II*^{46, 49}, *III*⁵⁰, *V*⁴⁸; *Strength of Recommendation: B*).

- 9.1. Following first line pembrolizumab or nivolumab, the second line options are ipilimumab-nivolumab with nivolumab maintenance^{‡‡}, or ipilimumab monotherapy^{‡‡}.
- 9.2. Following first line nivolumab-relatlimab, the second line option is ipilimumab monotherapy^{‡‡}.

10. For patients with *BRAF* wild-type metastatic melanoma who either never received adjuvant PD-1 therapy or relapsed with distant metastatic disease ≥6 months after completion, first-line treatment options are: nivolumab-relatlimab, ipilimumab-nivolumab then nivolumab maintenance, pembrolizumab or nivolumab (*Level of Evidence: I, II*^{42, 43, 51}; *Strength of Recommendation: A*).

- 10.1. Following first-line nivolumab-relatlimab, second-line option can be ipilimumab^{‡‡}.
- 10.2. Following first-line pembrolizumab or nivolumab, second-line option is ipilimumab-nivolumab with nivolumab maintenance therapy^{‡‡}.

11. For patients with *BRAF* wild-type metastatic melanoma who relapsed with distant metastatic disease during adjuvant PD-1 therapy or <6 months after completion, first-line treatment option is

^{††} Nivolumab-relatlimab is not provincially funded within 6 months of PD-1 therapy ([AHS OCDBP](#), as of August 27, 2025).

^{‡‡} Ipilimumab and ipilimumab-nivolumab are not provincially funded for second-line treatment in the metastatic setting ([AHS OCDBP](#), as of August 27, 2025).

^{§§} Pembrolizumab, nivolumab, and nivolumab-relatlimab are not provincially funded for first-line treatment in the metastatic setting within 6 months of targeted therapy ([AHS OCDBP](#), as of August 27, 2025).

ipilimumab-nivolumab then nivolumab maintenance^{††} (*Level of Evidence: II*⁴⁷; *Strength of Recommendation: B*).

12. Chemotherapy may be considered beyond immunotherapy and/or targeted therapy for patients with metastatic melanoma when no further options exist (*Level of Evidence: V*; *Strength of Recommendation: C*).

Discussion

Neoadjuvant and Adjuvant Therapy

To reduce the risk of recurrence of melanoma and to improve oncological outcomes, patients with locally advanced, invasive melanomas (generally stage III with lymph node involvement) should be considered for neoadjuvant immunotherapy followed by adjuvant therapy as indicated. Patients with stage IIB, IIC, and stage III melanomas that are managed with surgical resection up-front may be considered for adjuvant therapy following a balanced discussion of the risk/benefit profile specific to their stage of disease and eligibility for treatment. Note that these stages are determined by classification risk categories which are based on the characteristics of the primary tumour as well as regional lymph node involvement. The American Joint Committee on Cancer (AJCC) Cancer Staging Manual (8th edition, see [Appendix A](#)) is the basis for specific recommendations about adjuvant therapy.⁵² Within the primary tumour, increasing tumour thickness, a high mitotic rate, the presence of ulceration and microsatellitosis are associated with an increased risk of recurrence and correspond to higher stage disease accordingly.⁵³

Clinical trials which assess immunotherapy in the neoadjuvant and adjuvant settings for melanoma have focused on treating patients at a high risk for recurrence (based on AJCC stage) with checkpoint inhibitors targeting PD-1 (nivolumab and pembrolizumab) and CTLA-4 (ipilimumab) to improve RFS, distant metastasis-free survival (DMFS) and OS. Targeted therapies investigated in clinical trials in the neoadjuvant and adjuvant settings utilize BRAF/MEK inhibitors in patients with melanomas found to have BRAF V600 mutations (50% of those with metastatic disease)⁵⁴. These inhibitors block the mitogen-activated protein kinase (MAPK) signaling pathway and microphthalmia-associated transcription factor (MITF), a transcriptional regulator of the pigment pathway in melanocytes; both key factors in the development of melanoma.⁵⁵ Note that the efficacy of BRAF/MEK inhibitors in the adjuvant setting has only been demonstrated in patients with stage III disease and therefore it is not approved for those with stage II disease. While neoadjuvant therapy may also be considered for patients who experience relapse, these individuals have generally not been included in neoadjuvant clinical trials; thus, no evidence-based recommendations can be made for this population. Discussion at multidisciplinary rounds is recommended to determine management for these patients whenever possible.

Immunotherapy in the Neoadjuvant Setting

Pembrolizumab is currently standard of care treatment choice for neoadjuvant therapy, based on results from the phase II SWOG S1801 trial.¹² Compared to the adjuvant treatment only arm, the

S1801 trial reported that 2-yr EFS was 23% higher in the neoadjuvant arm, with comparable toxicity profile.¹² Currently awaiting funding approval, neoadjuvant treatment with ipilimumab-nivolumab combination has also demonstrated the ability to induce major pathological responses (MPR) in 59% of patients in practice-changing phase III NADINA trial, confirming results from prior phase II and phase Ib clinical trials.^{14-16, 56} In the NADINA trial, 1-yr EFS rate was 84%,¹⁵ in the phase II OpACIN-neo trial 3-yr RFS and OS rates were 79% and 93%,⁵⁷ in the phase II single-arm PRADO trial 2-yr RFS and OS rates were 93% and 95%,⁵⁶ and in the phase Ib OpACIN trial 5-yr RFS and OS rates were 70% and 90%.⁵⁷

Specifically, patients with a pathological response demonstrated consistently higher survival outcomes after lymph node dissection. Partial pathological response (pPR) is generally defined as <50% viable tumour cells in the treated tumour bed, and major pathological response (MPR) or near pathologic complete response (pCR) as <10% viable tumour in the treated tumour bed.⁵⁸ In the phase II OpACIN-neo trial 2-yr RFS rate was 97% for patients with pPR vs 36% for those with no pathological response,⁵⁷ and in the phase II single-arm PRADO trial 2-yr RFS rate was of 93% for patients with MPR vs 71% for those with no MPR.⁵⁶ In another phase II trial with 30 patients, higher 4-yr RFS rates were noted for patients with MPR after neoadjuvant nivolumab-relatlimab (95% vs 60%).⁵⁹

High toxicity was reported for the neoadjuvant ipilimumab-nivolumab treatments, especially among patients receiving 3mg/kg ipilimumab,⁵⁷ compared to less severe adverse events with neoadjuvant nivolumab monotherapy at the cost of reduced pathological response.⁶⁰ Conversely, neoadjuvant nivolumab-relatlimab resulted in higher response rates than nivolumab-ipilimumab therapy but with more adverse events.⁶¹

Targeted Therapy in the Neoadjuvant Setting

Neoadjuvant treatment with BRAF/MEK inhibitors for patients with melanomas harbouring BRAF-V600 mutations is not currently recommended due to a lack of durable responses.⁶² MPR was achieved in 69% of patients in the single-arm phase II NeoCombi trial,^{63, 64} but in the COMBI-AD trial (adjuvant dabrafenib and trametinib vs placebo), 2-yr RFS rate (43%) was similar to the placebo arm (44%).²⁷ In contrast, the phase II Combi-Neo trial was terminated early due to the complete response of 7/21 patients in the dabrafenib and trametinib treatment arm.⁶⁵ Combining dabrafenib-trametinib with pembrolizumab, the phase II NeoTrio trial did achieve higher survival outcomes; among patients in the sequential treatment arm, 2-yr RFS and OS were 80% and 89% respectively.⁶⁶

Immunotherapy in the Adjuvant Setting

Adjuvant nivolumab for patients with stage III cutaneous melanoma improved RFS (HR 0.46) compared to placebo, in a meta-analysis of phase III CheckMate 238^{67, 68} (nivolumab vs ipilimumab) and phase III EORTC 18071^{69, 70} (ipilimumab vs placebo) trials.²⁶ Ipilimumab-nivolumab combination therapy did not improve survival outcomes in the phase III CheckMate 915 trial compared to nivolumab monotherapy.⁵²

Adjuvant pembrolizumab improved long-term survival outcomes in phase III trials for patients with resected stage IIB/C (KEYNOTE-716 trial)¹⁶ and stage III cutaneous melanoma (KEYNOTE-054 trial).²¹ In stage IIB/C patients, 2-yr RFS and DMFS rates were 81% (vs 73% placebo) and 88% (vs 82%) respectively; 4-yr RFS and DMFS rates were 71% (vs 58%) and 81% (vs 70%) respectively.¹⁵ For patients with stage III, 3.5-yr RFS and DMFS rates were 64% (vs 44% placebo) and 65% (vs 49%) respectively; and 5-yr RFS and DMFS rates were 55% (vs 38%) and 67% (vs 45%) respectively.^{23, 24} A multivariable analysis for stage IIB/C patients found that tumour thickness >4 mm and mitotic rate $\geq 5/\text{mm}^2$ were associated with improved RFS, while tumour location was not associated.^{19, 20} In contrast, the phase III SWOG S1404 trial, which included stage III and IV patients, found no RFS or OS benefit for pembrolizumab compared to standard-of-care high-dose IFN- α or ipilimumab.⁷¹

For patients with stage IV melanoma, nivolumab monotherapy did not improve survival outcomes in the phase II IMMUNED trial.⁵⁴ Adding ipilimumab to the first 4 cycles of nivolumab however, did result in improved RFS compared to placebo (HR 0.23) and nivolumab only (HR 0.41), and improved OS compared to placebo (HR 0.41), but no OS benefit compared to nivolumab (95% CI 0.22-1.38). Higher toxicity rates were noted with ipilimumab/nivolumab, as anticipated.³² For patients with stage IIB-C melanoma, adjuvant nivolumab therapy can improve RFS and DMFS outcomes. In the phase III CheckMate 76K trial, 1-yr RFS and DMFS rates were 89% and 92% compared to placebo (79% and 85%, respectively), with only 10% severe toxicities reported.¹⁴

Targeted Therapy in the Adjuvant Setting

Adjuvant dabrafenib-trametinib combination treatment improved long-term outcomes (RFS and DMFS) in patients with resected stage III BRAF V600-mutant cutaneous melanoma in the phase III COMBI-AD trial.³⁰ Compared to placebo, reported 5-yr RFS and DMFS rates were 52% (vs 36%) and 65% (vs 54%).⁷² Reported 10-yr RFS and DMFS rates were 48% (vs 32%) and 63% (vs 48%). No difference in OS was reported, except for patients with BRAF V600E-positive melanoma (8-yr OS HR 0.75).²⁸ Adjuvant vemurafenib*** improved disease-free survival but not overall survival among patients with stage IIC-IIIB melanoma included in the phase III BRIM8 trial, with 1-yr and 2-yr DFS rates of 84% (vs 66%) and 71% (vs 57%).⁷³ No benefits were observed among patients with stage IIIC melanoma. These findings from these trials led to the approval of BRAF/MEK inhibitors in the setting of resected stage III disease, but not in those with stage II.

Experimental Approaches

In the adjuvant setting, different agents have been investigated in clinical trials, but none have demonstrated meaningful clinical benefit. The phase IIb KEYNOTE-942 trial reported an improved

*** Currently only approved in Alberta for treatment of unresectable or metastatic melanoma that did not progress under dabrafenib plus trametinib. See https://www.cda-amc.ca/sites/default/files/pcodr/pcodr_provfund_vemurafenib_zelboraf-advmel.pdf

distant metastasis-free survival (HR 0.35), despite no RFS benefit with mRNA-4157 in addition to pembrolizumab.⁷⁴ The phase III AVAST-M trial did not find an impact of bevacizumab, an anti angiogenesis treatment that inhibits vascular endothelial growth factor.⁷⁵ The phase III trial by Khammari *et al.* was unable to validate the efficacy of adoptive tumour-infiltrating therapy combined with interleukin-2 from previous trials.⁷⁶ The phase III MIND-DC trial did not find an impact of natural dendritic cells.⁷⁷ The phase IIb trial by Vreeland *et al.* did not see a benefit from adjuvant dendritic cell vaccine in the intention-to-treat population.⁷⁸ Lastly, vaccine therapy including with MAGE-A3, allogenic whole-cell vaccine plus bacillus Calmette-Guerin, granulocyte-macrophage colony-stimulating factor, and peptide vaccination have been investigated in several trials in patients with stage III melanoma in the adjuvant setting; however, none have been shown to be effective.⁷⁹⁻⁸³

In the neoadjuvant setting, promising results were reported for talimogene laherparepvec in the phase II trial by Dummer *et al.*^{84, 85} Reported 2-yr RFS and OS rates were 30% (vs 7% placebo) and 89% (vs 77%); 5-yr RFS and OS rates were 22% (vs 15%) and 77% (vs 63%); adverse effects were minimal.^{84, 85}

Adjuvant Therapies of Historical Significance

Prior to the development of immunotherapy and targeted therapy, interferon- α (IFN- α) was the only effective adjuvant therapy for high-risk melanoma. High-dose IFN- α (20 megaunits [MU]/m²/d \times 5 days a week for 4 weeks and 10 MU/m² three times per week for 48 weeks) was considered the gold standard based on results from the ECOG 1684 and Intergroup E1694 trials that showed improved RFS and OS.^{86, 87} A range of IFN- α doses, forms and comparisons to observation or other treatments have since been studied.⁸⁸⁻¹⁰⁰ However, IFN- α is associated with significant toxicities that affect numerous organ systems and is no longer routinely used.

Adjuvant ipilimumab used to be standard of care, demonstrating efficacy in improved long-term survival (RFS, DMFS, OS) in patients with stage III cutaneous melanoma in the large phase III EORTC 18071 clinical trial, with 3-yr RFS and OS rates of 46.5% and 65.4% compared to 34.8% and 54.4% in placebo.^{69, 70} However, due to high treatment-related adverse events (38-57%, depending on dosage),^{101, 102} its clinical use has declined in favor of other available adjuvant therapy options such as adjuvant nivolumab. This was further supported by the phase III CheckMate 238 trial which reported higher 4-yr RFS for the nivolumab arm (52%) compared to the ipilimumab arm (41%), even though OS was similar.^{67, 68}

Systemic Therapy for Metastatic Melanoma

Systemic therapy for metastatic melanoma is given with the intent to control the disease and delay progression while prolonging overall survival and maintaining quality of life. As systemic therapy options include many of the regimens offered in the neoadjuvant/adjuvant setting, treatment decisions must take prior therapies into account, as well as BRAF mutational status, disease burden, and patient performance status to optimize outcomes while mitigating toxicity.

Immunotherapy and Targeted Therapy

First-line treatments for advanced melanoma include single agent PD-1 inhibitors (nivolumab or pembrolizumab), PD-1 combined with CTLA-4 blockade (nivolumab plus ipilimumab), PD-1 combined with LAG-3 blockade (nivolumab plus relatlimab), and for BRAF V600-mutated melanoma, BRAF inhibitors (vemurafenib, dabrafenib, or encorafenib) paired with MEK inhibitors (cobimetinib, trametinib, or binimetinib).

Treatment with nivolumab and pembrolizumab monotherapy have demonstrated improved survival and progression free survival in phase III clinical trials. The phase III CheckMate 067 trial showed improved PFS and OS with nivolumab compared to ipilimumab monotherapy (HR 0.55 & HR 0.63).³⁸⁻⁴⁰ The KEYNOTE-006 trial demonstrated efficacy of pembrolizumab compared to ipilimumab, with better OS (HR 0.73) and PFS (HR 0.57).^{42, 43} These trials also demonstrated a median PFS of 5–8 months, a median OS of 24–32 months, and a favorable safety profile with grade 3–4 adverse events in only 10–15% of patients, a marked improvement over ipilimumab's toxicity. The combination of nivolumab and ipilimumab, also demonstrated in phase III CheckMate 067 trial, shows improved PFS and OS compared to ipilimumab (HR 0.55 & HR 0.55) and nivolumab monotherapy (HR 0.78 & HR 0.63).³⁸⁻⁴⁰ However, its high toxicity (grade 3–4 in up to 59%) requires careful patient selection to balance efficacy and safety.

The combination of nivolumab-relatlimab offers another first-line option which was recently approved by Health Canada. In treatment-naïve patients, the phase II/III RELATIVITY-047 trial demonstrated a median PFS of 10.1 months (vs 4.6 months with nivolumab alone; HR 0.75) and a 12-month PFS rate of 47.7% versus 36%.³⁴⁻³⁶ With grade 3–4 occurring in 22% of patients, this regimen provides a more tolerable alternative to nivolumab-ipilimumab, making it suitable for a broad patient population, including those with a history of autoimmune disease who are at a higher risk of developed immune related adverse events (IrAEs) than the general population.

For BRAF V600-mutated melanoma, combined BRAF and MEK inhibitors offer additional first-line options, demonstrating superior response rates, PFS, and OS compared to single-agent BRAF inhibitors in the COMBI-d, COMBI-v and COLUMBUS trials.^{31, 41} These targeted therapies provide a critical alternative for patients with actionable mutations, further personalizing treatment strategies.

Therapies After Disease Progression

For BRAF wild-type melanoma, approved second-line treatment options are limited, often necessitating enrollment in clinical trials or personalized treatment strategies. In patients who progressed on first-line anti-PD-1 monotherapy or exhibited primary refractory disease following anti-PD-1 therapy, ipilimumab monotherapy or the combination of nivolumab plus ipilimumab are viable options. The SWOG S1616 trial demonstrated efficacy of the combination in this setting, with improved response rates and PFS compared to ipilimumab alone.⁴⁷ Additionally, RELATIVITY-020 trial demonstrated that nivolumab plus relatlimab may serve as an alternative for patients with melanoma that progressed after single-agent anti-PD-1 therapy.⁴⁸

For BRAF V600-mutated melanoma, all second-line options available for BRAF-WT melanoma remain applicable. Additionally, combined BRAF and MEK inhibitor therapy (e.g., dabrafenib plus trametinib, encorafenib plus binimetinib, or vemurafenib plus cobimetinib) is recommended if not used as the immediate prior treatment.

Other Options

Lastly, therapeutic options for advanced melanoma after PD-1 failure are expanding, with TIL therapy, anti-LAG-3 inhibitors, TVEC, and targeted agents under active investigation; with lifileucel TIL therapy recently approved by the FDA for patients with unresectable or metastatic melanoma previously treated with anti-PD-1 immunotherapy.¹⁰³⁻¹⁰⁵

References

1. Cancer Care Alberta. The 2024 Report on Cancer Statistics in Alberta. Accessed 2025/5/6, <https://public.tableau.com/app/profile/cancercontrol.ab/viz/The2024ReportonCancerStatisticsinAlberta/Highlights>
2. Conte S. Population-Based Study Detailing Cutaneous Melanoma Incidence and Mortality Trends in Canada. *Frontiers in medicine*. 2022;9:2022.
3. Long GV, Menzies AM, Scolyer RA. Neoadjuvant Checkpoint Immunotherapy and Melanoma: The Time Is Now. *Journal of clinical oncology*. 2023;41(17):3236-3248.
4. Yuan F, Jing M, Chen X, Zhang X. Effect of neoadjuvant therapy on survival outcomes in patients with melanoma: a systematic review and meta-analysis. *EClinicalMedicine*. Oct 2025;88:103504.
5. Topalian SL, Taube JM, Pardoll DM. Neoadjuvant checkpoint blockade for cancer immunotherapy. *Science (American Association for the Advancement of Science)*. 2020;367(6477):eabb3110.
6. Surveillance Research Program - National Cancer Institute. SEER*Explorer: An interactive website for SEER cancer statistics. Accessed August 7, 2025. <https://seer.cancer.gov/statistics-network/explorer/>
7. Seth R, Agarwala SS, Messersmith H, Alluri KC, Ascierto PA, Atkins MB, et al. Systemic Therapy for Melanoma: ASCO Guideline Update. *Journal of clinical oncology*. 2023;41(30):4794-4820.
8. Pavlick AC, Ariyan CE, Buchbinder EI, Davar D, Gibney GT, Hamid O, et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of melanoma, version 3.0. *Journal for immunotherapy of cancer*. 2023;11(10):e006947.
9. Amaral T, Ottaviano M, Arance A, Blank C, Chiarion-Sileni V, Donia M, et al. Cutaneous melanoma: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. *Annals of oncology*. 2025;36(1):10-30.
10. Canada's Drug Agency. Final Report CDA-AMC Reimbursement Review. Panel Provisional Funding Algorithm. Indication: Melanoma. Accessed August 25, 2025. <https://www.cda-amc.ca/melanoma-0>
11. Blank CU, Lucas MW, Scolyer RA, van de Wiel BA, Menzies AM, Lopez-Yurda M, et al. Neoadjuvant Nivolumab and Ipilimumab in Resectable Stage III Melanoma. *The New England journal of medicine*. 2024;391(18):1696-1708.
12. Patel SP, Othus M, Chen Y, Wright GP, Jr., Yost KJ, Hyngstrom JR, et al. Neoadjuvant-Adjuvant or Adjuvant-Only Pembrolizumab in Advanced Melanoma. *The New England journal of medicine*. 2023;388(9):813-823.
13. Patel S, Othus M, Wright P, Hyngstrom J, Lao CD, Truong TG, et al. LBA48 Pathologic response and exploratory analyses of neoadjuvant-adjuvant versus adjuvant pembrolizumab (PEM) for resectable stage IIIb-IV melanoma from SWOG S1801. *Annals of oncology*. 2023;34:S1288-S1288.
14. Kirkwood JM, Del Vecchio M, Weber J, Hoeller C, Grob J-J, Mohr P, et al. Adjuvant nivolumab in resected stage IIB/C melanoma: primary results from the randomized, phase 3 CheckMate 76K trial. *Nature medicine*. 2023;29(11):2835-2843.
15. Luke JJ, Rutkowski P, Queirolo P, Del Vecchio M, Mackiewicz J, Chiarion-Sileni V, et al. Pembrolizumab versus placebo as adjuvant therapy in completely resected stage IIB or IIC melanoma (KEYNOTE-716): a randomised, double-blind, phase 3 trial. *Lancet (London, England)*. 2022;399(10336):1718-1729.
16. Long GV, Luke JJ, Khattak MA, de la Cruz Merino L, Del Vecchio M, Rutkowski P, et al. Pembrolizumab versus placebo as adjuvant therapy in resected stage IIB or IIC melanoma (KEYNOTE-716): distant metastasis-free survival results of a multicentre, double-blind, randomised, phase 3 trial. *The Lancet Oncology*. 2022;23(11):1378-1388.
17. Luke JJ, Ascierto PA, Khattak MA, de la Cruz Merino L, Del Vecchio M, Rutkowski P, et al. Pembrolizumab Versus Placebo as Adjuvant Therapy in Resected Stage IIB or IIC Melanoma: Final Analysis of Distant Metastasis-Free Survival in the Phase III KEYNOTE-716 Study. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology*. 2024;42(14):1619-1624.
18. Luke JJ, Ascierto PA, Khattak MA, Rutkowski P, Del Vecchio M, Spagnolo F, et al. Pembrolizumab versus placebo as adjuvant therapy in resected stage IIB or IIC melanoma: Long-term follow-up, crossover, and rechallenge with pembrolizumab in the phase III KEYNOTE-716 study. *European journal of cancer (Oxford, England : 1990)*. 2025;220:115381.
19. Schadendorf D, Luke JJ, Ascierto PA, Long GV, Rutkowski P, Khattak A, et al. Pembrolizumab versus placebo as adjuvant therapy in resected stage IIB or IIC melanoma: Outcomes in histopathologic subgroups from the randomized, double-blind, phase 3 KEYNOTE-716 trial. *Journal for immunotherapy of cancer*. 2024;12(3):eabb3110.
20. Yoon CH, Ross MI, Gastman BR, Luke JJ, Ascierto PA, Long GV, et al. Adjuvant Pembrolizumab in Stage II Melanoma: Outcomes by Primary Tumor Location in the Randomized, Double-Blind, Phase III KEYNOTE-716 Trial. *Annals of surgical oncology*. 2025;32(4):2756-2764.
21. Eggermont AMM, Blank CU, Mandala M, Long GV, Atkinson V, Dalle S, et al. Adjuvant Pembrolizumab versus Placebo in Resected Stage III Melanoma. *N Engl J Med*. May 10 2018;378(19):1789-1801.

22. Eggermont AMM, Chiarion-Silni V, Grob J-J, Dummer R, Wolchok JD, Schmidt H, et al. Adjuvant ipilimumab versus placebo after complete resection of stage III melanoma: long-term follow-up results of the European Organisation for Research and Treatment of Cancer 18071 double-blind phase 3 randomised trial. *European journal of cancer (Oxford, England : 1990)*. 2019;119:1-10.
23. Eggermont AMM, Blank CU, Mandala M, Long GV, Atkinson VG, Dalle S, et al. Longer Follow-Up Confirms Recurrence-Free Survival Benefit of Adjuvant Pembrolizumab in High-Risk Stage III Melanoma: Updated Results From the EORTC 1325-MG/KEYNOTE-054 Trial. *J Clin Oncol*. Nov 20 2020;38(33):3925-3936.
24. Eggermont AMM, Kicinski M, Blank CU, Mandala M, Long GV, Atkinson V, et al. Five-Year Analysis of Adjuvant Pembrolizumab or Placebo in Stage III Melanoma. *NEJM evidence*. 2022;1(11):EVIDoa2200214.
25. Eggermont AM, Kicinski M, Blank CU, Mandala M, Long GV, Atkinson V, et al. Seven-year analysis of adjuvant pembrolizumab versus placebo in stage III melanoma in the EORTC1325 / KEYNOTE-054 trial. *European journal of cancer (Oxford, England : 1990)*. 2024;211:114327.
26. Weber JS, Poretta T, Stwalley BD, Sakkal LA, Du EX, Wang T, et al. Nivolumab versus placebo as adjuvant therapy for resected stage III melanoma: a propensity weighted indirect treatment comparison and number needed to treat analysis for recurrence-free survival and overall survival. *Cancer immunology, immunotherapy : CII*. 2023;72(4):945-954.
27. Long GV, Hauschild A, Santinami M, Atkinson V, Mandala M, Chiarion-Silni V, et al. Adjuvant Dabrafenib plus Trametinib in Stage III BRAF-Mutated Melanoma. *N Engl J Med*. Nov 9 2017;377(19):1813-1823.
28. Long GV, Hauschild A, Santinami M, Kirkwood JM, Atkinson V, Mandala M, et al. Final Results for Adjuvant Dabrafenib plus Trametinib in Stage III Melanoma. *The New England journal of medicine*. 2024;391(18):1709-1720.
29. Dummer R, Brase JC, Garrett J, Campbell CD, Gasal E, Squires M, et al. Adjuvant dabrafenib plus trametinib versus placebo in patients with resected, BRAF(V600)-mutant, stage III melanoma (COMBI-AD): exploratory biomarker analyses from a randomised, phase 3 trial. *Lancet Oncol*. Mar 2020;21(3):358-372.
30. Hauschild A, Dummer R, Schadendorf D, Santinami M, Atkinson V, Mandala M, et al. Longer Follow-Up Confirms Relapse-Free Survival Benefit With Adjuvant Dabrafenib Plus Trametinib in Patients With Resected BRAF V600-Mutant Stage III Melanoma. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology*. 2018;36(35):3441-3449.
31. Schadendorf D, Dummer R, Flaherty KT, Robert C, Arance A, de Groot JWB, et al. COLUMBUS 7-year update: A randomized, open-label, phase III trial of encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF V600E/K-mutant melanoma. *European journal of cancer (1990)*. 2024;204:114073.
32. Livingstone E, Zimmer L, Hassel JC, Fluck M, Eigentler TK, Loquai C, et al. Adjuvant nivolumab plus ipilimumab or nivolumab alone versus placebo in patients with resected stage IV melanoma with no evidence of disease (IMMUNED): final results of a randomised, double-blind, phase 2 trial. *Lancet (London, England)*. 2022;400(10358):1117-1129.
33. Zimmer L, Livingstone E, Hassel JC, Fluck M, Eigentler T, Loquai C, et al. Adjuvant nivolumab plus ipilimumab or nivolumab monotherapy versus placebo in patients with resected stage IV melanoma with no evidence of disease (IMMUNED): a randomised, double-blind, placebo-controlled, phase 2 trial. *Lancet (London, England)*. 2020;395(10236):1558-1568.
34. Long GV, Stephen Hodi F, Lipson EJ, Schadendorf D, Ascierto PA, Matamala L, et al. Overall Survival and Response with Nivolumab and Relatlimab in Advanced Melanoma. *NEJM evidence*. 2023;2(4):EVIDoa2200239.
35. Tawbi HA, Schadendorf D, Lipson EJ, Ascierto PA, Matamala L, Castillo Gutiérrez E, et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma. *The New England journal of medicine*. 2022;386(1):24-34.
36. Tawbi HA, Hodi FS, Lipson EJ, Schadendorf D, Ascierto PA, Matamala L, et al. Three-Year Overall Survival With Nivolumab Plus Relatlimab in Advanced Melanoma From RELATIVITY-047. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology*. 2025;43(13):1546-1552.
37. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in Previously Untreated Melanoma without BRAF Mutation. *The New England journal of medicine*. 2015;372(4):320-330.
38. Wolchok JD, Chiarion-Silni V, Gonzalez R, Rutkowski P, Grob J-J, Cowey CL, et al. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. *The New England journal of medicine*. 2017;377(14):1345-1356.
39. Larkin J, Chiarion-Silni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. *The New England journal of medicine*. 2015;373(1):23-34.
40. Wolchok JD, Chiarion-Silni V, Rutkowski P, Cowey CL, Schadendorf D, Wagstaff J, et al. Final, 10-Year Outcomes with Nivolumab plus Ipilimumab in Advanced Melanoma. *The New England journal of medicine*. 2025;392(1):11-22.
41. Pasquali S, Hadjinicolaou AV, Chiarion Silni V, Rossi CR, Mocellin S. Systemic treatments for metastatic cutaneous melanoma. *Cochrane database of systematic reviews*. 2018;2020(11):CD011123.

42. Robert C, Ribas A, Schachter J, Arance A, Grob J-J, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. *The lancet oncology*. 2019;20(9):1239-1251.
43. Schachter J, Ribas A, Long GV, Arance A, Grob J-J, Mortier L, et al. Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). *The Lancet (British edition)*. 2017;390(10105):1853-1862.
44. Ascierto PA, Mandalà M, Ferrucci PF, Guidoboni M, Rutkowski P, Ferraresi V, et al. Sequencing of Ipilimumab Plus Nivolumab and Encorafenib Plus Binimetinib for Untreated BRAF-Mutated Metastatic Melanoma (SECOMBIT): A Randomized, Three-Arm, Open-Label Phase II Trial. *Journal of clinical oncology*. 2023;41(2):212-221.
45. Ascierto PA, Casula M, Bulgarelli J, Pisano M, Piccinini C, Piccin L, et al. Sequential immunotherapy and targeted therapy for metastatic BRAF V600 mutated melanoma: 4-year survival and biomarkers evaluation from the phase II SECOMBIT trial. *Nature communications*. 2024;15(1):146-12.
46. Atkins MB, Lee SJ, Chmielowski B, Tarhini AA, Cohen GI, Truong T-G, et al. Combination Dabrafenib and Trametinib Versus Combination Nivolumab and Ipilimumab for Patients With Advanced BRAF-Mutant Melanoma: The DREAMseq Trial-ECOG-ACRIN EA6134. *Journal of clinical oncology*. 2023;41(2):186-197.
47. VanderWalde A, Bellasea SL, Kendra KL, Khushalani NI, Campbell KM, Scumpia PO, et al. Ipilimumab with or without nivolumab in PD-1 or PD-L1 blockade refractory metastatic melanoma: a randomized phase 2 trial. *Nature medicine*. 2023;29(9):2278-2285.
48. Ascierto PA, Lipson EJ, Dummer R, Larkin J, Long GV, Sanborn RE, et al. Nivolumab and Relatlimab in Patients With Advanced Melanoma That Had Progressed on Anti-Programmed Death-1/Programmed Death Ligand 1 Therapy: Results From the Phase I/Ia RELATIVITY-020 Trial. *Journal of clinical oncology*. 2023;41(15):2724-2735.
49. Ribas A, Puzanov I, Dummer R, Schadendorf D, Hamid O, Robert C, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. *The lancet oncology*. 2015;16(8):908-918.
50. Larkin J, Minor D, D'Angelo S, Neyns B, Smylie M, Miller WH, et al. Overall Survival in Patients With Advanced Melanoma Who Received Nivolumab Versus Investigator's Choice Chemotherapy in CheckMate 037: A Randomized, Controlled, Open-Label Phase III Trial. *Journal of clinical oncology*. 2018;36(4):383-390.
51. Hodi FS, Chesney J, Pavlick AC, Robert C, Grossmann KF, McDermott DF, et al. Two-year overall survival rates from a randomised phase 2 trial evaluating the combination of nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma. *The lancet oncology*. 2016;17(11):1558-1568.
52. Weber JS, Schadendorf D, Del Vecchio M, Larkin J, Atkinson V, Schenker M, et al. Adjuvant Therapy of Nivolumab Combined With Ipilimumab Versus Nivolumab Alone in Patients With Resected Stage IIIB-D or Stage IV Melanoma (CheckMate 915). *Journal of clinical oncology : official journal of the American Society of Clinical Oncology*. 2023;41(3):517-527.
53. von Schuckmann LA, Hughes MCB, Ghiasvand R, Malt M, van der Pols JC, Beesley VL, et al. Risk of Melanoma Recurrence After Diagnosis of a High-Risk Primary Tumor. *JAMA dermatology (Chicago, Ill)*. 2019;155(6):688-693.
54. Zimmer L, Livingstone E, Hassel JC, Fluck M, Eigentler T, Loquai C, et al. Adjuvant nivolumab plus ipilimumab or nivolumab monotherapy versus placebo in patients with resected stage IV melanoma with no evidence of disease (IMMUNED): a randomised, double-blind, placebo-controlled, phase 2 trial. *Lancet*. May 16 2020;395(10236):1558-1568.
55. Sullivan RJMD, Fisher DEMDP. Understanding the Biology of Melanoma and Therapeutic Implications. *Hematology/oncology clinics of North America*. 2014;28(3):437-453.
56. Reijers ILM, Menzies AM, van Akkooi ACJ, Versluis JM, van den Heuvel NMJ, Saw RPM, et al. Personalized response-directed surgery and adjuvant therapy after neoadjuvant ipilimumab and nivolumab in high-risk stage III melanoma: the PRADO trial. *Nature medicine*. 2022;28(6):1178-1188.
57. Rozeman EA, Hoefsmit EP, Reijers ILM, Saw RPM, Versluis JM, Krijgsman O, et al. Survival and biomarker analyses from the OpACIN-neo and OpACIN neoadjuvant immunotherapy trials in stage III melanoma. *Nature medicine*. 2021;27(2):256-263.
58. Tetzlaff MT, Messina JL, Stein JE, Xu X, Amaria RN, Blank CU, et al. Pathological assessment of resection specimens after neoadjuvant therapy for metastatic melanoma. *Ann Oncol*. Aug 1 2018;29(8):1861-1868.
59. Burton EM, Milton DR, Tetzlaff MT, Wani K, Ross MI, Postow MA, et al. Long-Term Survival and Biomarker Analysis Evaluating Neoadjuvant Plus Adjuvant Relatlimab (anti-LAG3) and Nivolumab (anti-PD1) in Patients With Resectable Melanoma. *J Clin Oncol*. Sep 10 2025;43(26):2856-2862.
60. Amaria RN, Reddy SM, Tawbi HA, Davies MA, Ross MI, Glitzia IC, et al. Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. *Nature medicine*. 2018;24(11):1649-1654.

61. Long GV, Flaherty KT, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, et al. Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: long-term survival and safety analysis of a phase 3 study. *Annals of oncology : official journal of the European Society for Medical Oncology*. 2017;28(7):1631-1639.
62. Menzies AM, Amaria RN, Rozeman EA, Huang AC, Tetzlaff MT, van de Wiel BA, et al. Pathological response and survival with neoadjuvant therapy in melanoma: a pooled analysis from the International Neoadjuvant Melanoma Consortium (INMC). *Nature medicine*. 2021;27(2):301-309.
63. Menzies AM, Lo SN, Saw RPM, Gonzalez M, Ch'ng S, Nieweg OE, et al. Five-year analysis of neoadjuvant dabrafenib and trametinib for stage III melanoma. *Annals of oncology*. 2024;35(8):739-746.
64. Long GV, Saw RPM, Lo S, Nieweg OE, Shannon KF, Gonzalez M, et al. Neoadjuvant dabrafenib combined with trametinib for resectable, stage IIIB-C, BRAF V600 mutation-positive melanoma (NeoCombi): a single-arm, open-label, single-centre, phase 2 trial. *The lancet oncology*. 2019;20(7):961.
65. Amaria RN, Prieto PA, Tetzlaff MT, Reuben A, Andrews MC, Ross MI, et al. Neoadjuvant plus adjuvant dabrafenib and trametinib versus standard of care in patients with high-risk, surgically resectable melanoma: a single-centre, open-label, randomised, phase 2 trial. *The Lancet Oncology*. 2018;19(2):181-193.
66. Long GV, Carlino MS, Au-Yeung G, Spillane AJ, Shannon KF, Gyorki DE, et al. Neoadjuvant pembrolizumab, dabrafenib and trametinib in BRAF V600 -mutant resectable melanoma: the randomized phase 2 NeoTrio trial. *Nature medicine*. 2024;30(9):2540-2548.
67. Weber J, Mandala M, Del Vecchio M, Gogas HJ, Arance AM, Cowey CL, et al. Adjuvant Nivolumab versus Ipilimumab in Resected Stage III or IV Melanoma. *The New England journal of medicine*. 2017;377(19):1824-1835.
68. Ascierto PA, Del Vecchio M, Mandala M, Gogas H, Arance AM, Dalle S, et al. Adjuvant nivolumab versus ipilimumab in resected stage IIIB-C and stage IV melanoma (CheckMate 238): 4-year results from a multicentre, double-blind, randomised, controlled, phase 3 trial. *Lancet Oncol*. Nov 2020;21(11):1465-1477.
69. Eggermont AMM, Chiarion-Sileni V, Grob J-J, Dummer R, Wolchok JD, Schmidt H, et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. *The Lancet Oncology*. 2015;16(5):522-530.
70. Eggermont AMM, Chiarion-Sileni V, Grob J-J, Dummer R, Wolchok JD, Schmidt H, et al. Prolonged Survival in Stage III Melanoma with Ipilimumab Adjuvant Therapy. *The New England journal of medicine*. 2016;375(19):1845-1855.
71. Grossmann KF, Othus M, Patel SP, Tarhini AA, Sondak VK, Knopp MV, et al. Adjuvant Pembrolizumab versus IFNa2b or Ipilimumab in Resected High-Risk Melanoma. *Cancer discovery*. 2022;12(3):644-653.
72. Dummer R, Hauschild A, Santinami M, Atkinson V, Mandala M, Kirkwood JM, et al. Five-Year Analysis of Adjuvant Dabrafenib plus Trametinib in Stage III Melanoma. *N Engl J Med*. Sep 17 2020;383(12):1139-1148.
73. Maio M, Lewis K, Demidov L, Mandala M, Bondarenko I, Ascierto PA, et al. Adjuvant vemurafenib in resected, BRAF V600 mutation-positive melanoma (BRIM8): a randomised, double-blind, placebo-controlled, multicentre, phase 3 trial. *The Lancet Oncology*. 2018;19(4):510-520.
74. Weber JS, Carlino MS, Khattak A, Meniawy T, Ansstas G, Taylor MH, et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. *Lancet (London, England)*. 2024;403(10427):632-644.
75. Corrie PG, Marshall A, Dunn JA, Middleton MR, Nathan PD, Gore M, et al. Adjuvant bevacizumab in patients with melanoma at high risk of recurrence (AVAST-M): preplanned interim results from a multicentre, open-label, randomised controlled phase 3 study. *The lancet oncology*. 2014;15(6):620-630.
76. Khammari A, Nguyen J-M, Leccia M-T, Guillot B, Saiagh S, Pandolfino M-C, et al. Tumor infiltrating lymphocytes as adjuvant treatment in stage III melanoma patients with only one invaded lymph node after complete resection: results from a multicentre, randomized clinical phase III trial. *Cancer immunology, immunotherapy : CII*. 2020;69(8):1663-1672.
77. Bol KF, Schreibelt G, Bloemendaal M, van Willigen WW, Hins-de Bree S, de Goede AL, et al. Adjuvant dendritic cell therapy in stage IIIB/C melanoma: the MIND-DC randomized phase III trial. *Nature communications*. 2024;15(1):1632.
78. Vreeland TJ, Clifton GT, Hale DF, Chick RC, Hickerson AT, Cindass JL, et al. A Phase IIb Randomized Controlled Trial of the TLPLDC Vaccine as Adjuvant Therapy After Surgical Resection of Stage III/IV Melanoma: A Primary Analysis: Phase IIb Trial of the TLPLDC Vaccine in Melanoma. *Annals of surgical oncology*. 2021;28(11):6126-6137.
79. Dreno B, Thompson JF, Smithers BM, Santinami M, Jouary T, Gutzmer R, et al. MAGE-A3 immunotherapeutic as adjuvant therapy for patients with resected, MAGE-A3-positive, stage III melanoma (DERMA): a double-blind, randomised, placebo-controlled, phase 3 trial. *The Lancet Oncology*. 2018;19(7):916-929.

80. Faries MB, Mozzillo N, Kashani-Sabet M, Thompson JF, Kelley MC, DeConti RC, et al. Long-Term Survival after Complete Surgical Resection and Adjuvant Immunotherapy for Distant Melanoma Metastases. *Annals of surgical oncology*. 2017;24(13):3991-4000.
81. Butterfield LH, Zhao F, Lee S, Tarhini AA, Margolin KA, White RL, et al. Immune Correlates of GM-CSF and Melanoma Peptide Vaccination in a Randomized Trial for the Adjuvant Therapy of Resected High-Risk Melanoma (E4697). *Clinical cancer research*. 2017;23(17):5034-5043.
82. Lawson DH, Lee S, Zhao F, Tarhini AA, Margolin KA, Ernstoff MS, et al. Randomized, Placebo-Controlled, Phase III Trial of Yeast-Derived Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) Versus Peptide Vaccination Versus GM-CSF Plus Peptide Vaccination Versus Placebo in Patients With No Evidence of Disease After Complete Surgical Resection of Locally Advanced and/or Stage IV Melanoma: A Trial of the Eastern Cooperative Oncology Group-American College of Radiology Imaging Network Cancer Research Group (E4697). *Journal of clinical oncology : official journal of the American Society of Clinical Oncology*. 2015;33(34):4066-4076.
83. Cebon JS, Gore M, Thompson JF, Davis ID, McArthur GA, Walpole E, et al. Results of a randomized, double-blind phase II clinical trial of NY-ESO-1 vaccine with ISCOMATRIX adjuvant versus ISCOMATRIX alone in participants with high-risk resected melanoma. *Journal for immunotherapy of cancer*. 2020;8(1).
84. Dummer R, Gyorki DE, Hyngstrom J, Berger AC, Conry R, Demidov L, et al. Neoadjuvant talimogene laherparepvec plus surgery versus surgery alone for resectable stage IIIB-IVM1a melanoma: a randomized, open-label, phase 2 trial. *Nature medicine*. 2021;27(10):1789-1796.
85. Dummer R, Gyorki DE, Hyngstrom JR, Ning M, Lawrence T, Ross MI. Final 5-Year Follow-Up Results Evaluating Neoadjuvant Talimogene Laherparepvec Plus Surgery in Advanced Melanoma: A Randomized Clinical Trial. *JAMA oncology*. 2023;9(10):1457-1459.
86. Kirkwood JM, Strawderman MH, Ernstoff MS, Smith TJ, Borden EC, Blum RH. Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. *J Clin Oncol*. Jan 1996;14(1):7-17.
87. Kirkwood JM, Ibrahim JG, Sosman JA, Sondak VK, Agarwala SS, Ernstoff MS, Rao U. High-dose interferon alfa-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB-III melanoma: results of intergroup trial E1694/S9512/C509801. *J Clin Oncol*. May 1 2001;19(9):2370-80.
88. Eggermont AMM, Suciu S, MacKie R, Ruka W, Testori A, Kruit W, et al. Post-surgery adjuvant therapy with intermediate doses of interferon alfa 2b versus observation in patients with stage IIb/III melanoma (EORTC 18952): randomised controlled trial. *The Lancet (British edition)*. 2005;366(9492):1189-1196.
89. Eggermont AMM, Suciu S, Rutkowski P, Kruit WH, Punt CJ, Dummer R, et al. Long term follow up of the EORTC 18952 trial of adjuvant therapy in resected stage IIB-III cutaneous melanoma patients comparing intermediate doses of interferon-alpha-2b (IFN) with observation: Ulceration of primary is key determinant for IFN-sensitivity. *European journal of cancer (Oxford, England : 1990)*. 2016;55:111-121.
90. Najjar YG, Puligandla M, Lee SJ, Kirkwood JM. An updated analysis of 4 randomized ECOG trials of high-dose interferon in the adjuvant treatment of melanoma. *Cancer*. Sep 1 2019;125(17):3013-3024.
91. Agarwala SS, Lee SJ, Yip W, Rao UN, Tarhini AA, Cohen GI, et al. Phase III Randomized Study of 4 Weeks of High-Dose Interferon- α -2b in Stage T2bNO, T3a-bNO, T4a-bNO, and T1-4N1a-2a (microscopic) Melanoma: A Trial of the Eastern Cooperative Oncology Group-American College of Radiology Imaging Network Cancer Research Group (E1697). *Journal of clinical oncology : official journal of the American Society of Clinical Oncology*. 2017;35(8):885-892.
92. Eigentler TK, Gutzmer R, Hauschild A, Heinzerling L, Schadendorf D, Nashan D, et al. Adjuvant treatment with pegylated interferon α -2a versus low-dose interferon α -2a in patients with high-risk melanoma: a randomized phase III DeCOG trial. *Annals of oncology : official journal of the European Society for Medical Oncology*. 2016;27(8):1625-1632.
93. Mocellin S, Pasquali S, Rossi CR, Nitti D. Interferon alpha adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis. *J Natl Cancer Inst*. Apr 7 2010;102(7):493-501.
94. Grob JJ, Dreno B, de la Salmonière P, Delaunay M, Cupissol D, Guillot B, et al. Randomised trial of interferon alpha-2a as adjuvant therapy in resected primary melanoma thicker than 1.5 mm without clinically detectable node metastases. French Cooperative Group on Melanoma. *The Lancet (British edition)*. 1998;351(9120):1905-1910.
95. Eggermont AMMP, Suciu SP, Santinami MMD, Testori AMD, Kruit WHJMD, Marsden JMD, et al. Adjuvant therapy with pegylated interferon alfa-2b versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomised phase III trial. *The Lancet (British edition)*. 2008;372(9633):117-126.

96. Eggermont AMM, Suciu S, Testori A, Santinami M, Kruit WHJ, Marsden J, et al. Long-Term Results of the Randomized Phase III Trial EORTC 18991 of Adjuvant Therapy With Pegylated Interferon Alfa-2b Versus Observation in Resected Stage III Melanoma. *Journal of clinical oncology*. 2012;30(31):3810-3818.
97. Hauschild A, Gogas H, Tarhini A, Middleton MR, Testori A, Dréno B, Kirkwood JM. Practical guidelines for the management of interferon-alpha-2b side effects in patients receiving adjuvant treatment for melanoma: expert opinion. *Cancer*. 2008;112(5):982.
98. Hauschild A, Weichenthal M, Rass K, Linse R, Berking C, Böttjer J, et al. Efficacy of low-dose interferon {alpha}2a 18 versus 60 months of treatment in patients with primary melanoma of \geq 1.5 mm tumor thickness: results of a randomized phase III DeCOG trial. *Journal of clinical oncology*. 2010;28(5):841-846.
99. Malczewski A, Marshall A, Payne MJ, Mao L, Bafaloukos D, Si L, et al. Intravenous high-dose interferon with or without maintenance treatment in melanoma at high risk of recurrence: meta-analysis of three trials. *Cancer medicine (Malden, MA)*. 2016;5(1):17-23.
100. Ives NJ, Suciu S, Eggermont AMM, Kirkwood J, Lorigan P, Markovic SN, et al. Adjuvant interferon- α for the treatment of high-risk melanoma: An individual patient data meta-analysis. *European journal of cancer (1990)*. 2017;82:171-183.
101. Tarhini AA, Kang N, Lee SJ, Hodi FS, Cohen GI, Hamid O, et al. Immune adverse events (irAEs) with adjuvant ipilimumab in melanoma, use of immunosuppressants and association with outcome: ECOG-ACRIN E1609 study analysis. *Journal for immunotherapy of cancer*. 2021;9(5).
102. Tarhini AA, Lee SJ, Hodi FS, Rao UNM, Cohen GI, Hamid O, et al. Phase III Study of Adjuvant Ipilimumab (3 or 10 mg/kg) Versus High-Dose Interferon Alfa-2b for Resected High-Risk Melanoma: North American Intergroup E1609. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology*. 2020;38(6):567-575.
103. Ramanarayanan J, Bulbul A, Henry LR, Krishnan GS, Villa-Zapata L. Systemic therapies for advanced melanoma after immunotherapy failure: Efficacy and safety insights. *Journal of clinical oncology*. 2025;43(16_suppl).
104. Hu L, Fan C, Bross P, Das A, Cho ES, Knudson KM, et al. FDA Approval Summary: Lileucel for Unresectable or Metastatic Melanoma Previously Treated with an Anti-PD-1-Based Immunotherapy. *Clin Cancer Res*. Oct 1 2025;31(19):4004-4009.
105. Medina T, Chesney JA, Kluger HM, Hamid O, Whitman ED, Cusnir M, et al. Long-Term Efficacy and Safety of Lileucel Tumor-Infiltrating Lymphocyte Cell Therapy in Patients With Advanced Melanoma: A 5-Year Analysis of the C-144-01 Study. *J Clin Oncol*. Nov 20 2025;43(33):3565-3572.

Appendix A: Melanoma TNM Definitions and Prognostic Stage Groups, AJCC 8th Edition

Table 1. TNM Definitions - Primary Tumour (T)

T Category	Thickness	Ulceration Status
TX: Primary tumour thickness cannot be assessed (e.g., diagnosis by curettage)	N/A	N/A
T0: No evidence of primary tumour (e.g., unknown primary or completely regressed melanoma)	N/A	N/A
Tis (melanoma <i>in situ</i>)	N/A	N/A
T1	≤1.0 mm	Unknown or unspecified
T1a	<0.8 mm	Without ulceration
T1b	<0.8 mm 0.8 to 1.0 mm	With ulceration With or without ulceration
T2	>1 to 2 mm	Unknown or unspecified
T2a	>1 to 2 mm	Without ulceration
T2b	>1 to 2 mm	With ulceration
T3	>2 to 4 mm	Unknown or unspecified
T3a	>2 to 4 mm	Without ulceration
T3b	>2 to 4 mm	With ulceration
T4	>4 mm	Unknown or unspecified
T4a	>4 mm	Without ulceration
T4b	>4 mm	With ulceration

Table 2. TNM Definitions - Regional Lymph Nodes (N)

N Category	Extent of Regional Lymph Node and/or Lymphatic Metastasis	
	Number of Tumour-Involved Regional Lymph Nodes	Presence of In-Transit, Satellite, and/or Microsatellite Metastases
NX	Regional nodes not assessed (e.g., SLN biopsy not performed, regional nodes previously removed for another reason) Exception: Pathological N category is not required for T1 melanomas, use cN	No
N0	No regional metastases detected	No
N1	One tumour-involved node or in-transit, satellite, and/or microsatellite metastases with no tumour-involved nodes	
N1a	One clinically occult (i.e., detected by SLN biopsy)	No
N1b	One clinically detected	No
N1c	No regional lymph node disease	Yes
N2	Two or three tumour-involved nodes or in-transit, satellite, and/or microsatellite metastases with one tumour-involved node	
N2a	Two or three clinically occult (i.e., detected by SLN biopsy)	No
N2b	Two or three, at least one of which was clinically detected	No
N2c	One clinically occult or clinically detected	Yes
N3	Four or more tumour-involved nodes or in-transit, satellite, and/or microsatellite metastases with two or more tumour-	

	involved nodes, or any number of matted nodes without or with in-transit, satellite, and/or microsatellite metastases	
N3a	Four or more clinically occult (i.e., detected by SLN biopsy)	No
N3b	Four or more, at least one of which was clinically detected, or presence of any number of matted nodes	No
N3c	Two or more clinically occult or clinically detected and/or presence of any number of matted nodes	Yes

SLN, *sentinel lymph node*

Table 3. TNM Definitions - Distant Metastasis (M)

M Category*	M Criteria	
	Anatomic Site	LDH Level
M0	No evidence of distant metastasis	N/A
M1	Evidence of distant metastasis	See below
M1a	Distant metastasis to skin, soft tissue including muscle, and/or nonregional lymph node	Not recorded or unspecified
M1a(0)		Not elevated
M1a(1)		Elevated
M1b	Distant metastasis to lung with or without M1a sites of disease	Not recorded or unspecified
M1b(0)		Not elevated
M1b(1)		Elevated
M1c	Distant metastasis to non-CNS visceral sites with or without M1a or M1b sites of disease	Not recorded or unspecified
M1c(0)		Not elevated
M1c(1)		Elevated
M1d	Distant metastasis to CNS with or without M1a, M1b, or M1c sites of disease	Not recorded or unspecified
M1d(0)		Normal
M1d(1)		Elevated

*Suffixes for M category: (0) LDH not elevated, (1) LDH elevated. No suffix is used if LDH is not recorded or unspecified.

CNS, *central nervous system*; LDH, *lactate dehydrogenase*

Table 4. TNM Prognostic Stage Groups

Clinical (cTNM)*			
When T is...	And N is...	And M is...	Then the clinical stage group is...
Tis	N0	M0	0
T1a	N0	M0	IA
T1b	N0	M0	IB
T2a	N0	M0	IB
T2b	N0	M0	IIA
T3a	N0	M0	IIA
T3b	N0	M0	IIB
T4a	N0	M0	IIB
T4b	N0	M0	IIC
Any T, Tis	≥N1	M0	III
Any T	Any N	M1	IV

*Clinical staging includes microstaging of the primary melanoma and clinical/radiologic/biopsy evaluation for metastases. By convention, clinical staging should be used after biopsy of the primary melanoma, with clinical assessment for regional and distant metastases. Note that pathological assessment of the primary melanoma is used for both clinical and pathological classification. Diagnostic biopsies to evaluate possible regional and/or distant metastasis also are included. Note there is only one stage group for clinical Stage III melanoma.

Pathological (pTNM)†			
When T is...	And N is...	And M is...	Then the clinical stage group is...‡
Tis	N0	M0	0
T1a	N0	M0	IA
T1b	N0	M0	IA
T2a	N0	M0	IB
T2b	N0	M0	IIA
T3a	N0	M0	IIA
T3b	N0	M0	IIB
T4a	N0	M0	IIB
T4b	N0	M0	IIC
T0	N1b, N1c	M0	IIIB
T0	N2b, N2c, N3b, or N3c	M0	IIIC
T1a/b-T2a	N1a or N2a	M0	IIIA
T1a/b-T2a	N1b/c or N2b	M0	IIIB
T2b/T3a	N1a-N2b	M0	IIIB
T1a-T3a	N2c or N3a/b/c	M0	IIIC
T3b/T4a	Any N ≥ N1	M0	IIIC
T4b	N1a-N2c	M0	IIIC
T4b	N3a/b/c	M0	IIID
Any T, Tis	Any N	M1	IV

†Pathological staging includes microstaging of the primary melanoma, including any additional staging information from the wide-excision (surgical) specimen that constitutes primary tumour surgical treatment and pathological information about the regional lymph nodes after SLN biopsy of therapeutic lymph node dissection for clinically evident regional lymph node disease.

‡Pathological Stage 0 (melanoma *in situ*) and T1 do not require pathological evaluation of lymph nodes to complete pathological staging; use cN information to assign their pathological stage.

Development and Revision History

This guideline was developed by a multidisciplinary working group comprised of members from the Alberta Provincial Cutaneous Tumour Team, external participants identified by the Working Group Lead, and a methodologist from the Guideline Resource Unit. The draft guideline was externally reviewed and endorsed by members of the Alberta Provincial Cutaneous Tumour Team who were not involved in the guideline's development, including surgical oncologists, radiation oncologists, medical oncologists, and dermatologists. A detailed description of the methodology followed during the guideline development process can be found in the [Guideline Resource Unit Handbook](#).

This guideline was developed in 2026.

Levels of Evidence

I	Evidence from at least one large randomized, controlled trial of good methodological quality (low potential for bias) or meta-analyses of well-conducted randomized trials <u>without heterogeneity</u>
II	Small randomized trials or large randomized trials with a suspicion of bias (lower methodological quality) or meta-analyses of such trials or of trials with demonstrated heterogeneity
III	Prospective cohort studies
IV	Retrospective cohort studies or case-control studies
V	Studies without control group, case reports, expert opinion

Strength of Recommendations

A	Strong evidence for efficacy with a substantial clinical benefit; <u>strongly recommended</u>
B	Strong or moderate evidence for efficacy but with a limited clinical benefit; <u>generally recommended</u>
C	Insufficient evidence for efficacy or benefit does not outweigh the risk or the disadvantages (adverse events, costs, etc.); <u>optional</u>
D	Moderate evidence against efficacy or for adverse outcome; <u>generally not recommended</u>
E	Strong evidence against efficacy or for adverse outcome; <u>never recommended</u>

Maintenance

A formal review of the guideline will be conducted in 2028. If critical new evidence is brought forward before that time, however, the guideline working group members will revise and update the document accordingly.

Abbreviations

AHS, Alberta Health Services; AJCC, American Joint Committee on Cancer; ASCO, American Society of Clinical Oncology; BRAF, B-Raf proto-oncogene; CCA, Cancer Care Alberta; CDA, Canada's Drug Agency; ChT, chemotherapy; CNS, central nervous system; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; DFS, disease-free survival; DMFS, distant metastasis-free survival; ECOG, Eastern Cooperative Oncology Group; EFS, event-free survival; ESMO, European Society for Medical Oncology; HR, hazard ratio; IFN- α , interferon alpha; MAPK, mitogen-activated protein kinase; MITF, microphthalmia-associated transcription factor; MPR, major pathologic response; MU, megaunits; OCDBP,

outpatient cancer pharmacy and drug benefit program; OS, overall survival; PD-1, programmed cell death protein 1; pNR, pathological non-response; pPR, pathological partial response; RFS, relapse-free survival; SITC, Society for Immunotherapy of Cancer; TLND, therapeutic lymph node dissection; UV, ultraviolet.

Disclaimer

The recommendations contained in this guideline are a consensus of the Alberta Provincial Tumour Team and are a synthesis of currently accepted approaches to management, derived from a review of relevant scientific literature. Clinicians applying these guidelines should, in consultation with the patient, use independent medical judgment in the context of individual clinical circumstances to direct care.

Copyright © (2026) Alberta Health Services

This copyright work is licensed under the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license](#)

You are free to copy and distribute the work including in other media and formats for non-commercial purposes, as long as you attribute the work to Alberta Health Services, do not adapt the work, and abide by the other license terms. To view a copy of this license, see <https://creativecommons.org/licenses/by-nc-sa/4.0/>.

The license does not apply to AHS trademarks, logos or content for which Alberta Health Services is not the copyright owner.

Funding Source

Financial support for the development of Cancer Care Alberta's evidence-based clinical practice guidelines and supporting materials comes from the Cancer Care Alberta operating budget; no outside commercial funding was received to support the development of this document.

All cancer drugs described in the guidelines are funded in accordance with the Outpatient Cancer Drug Benefit Program, at no charge, to eligible residents of Alberta, unless otherwise explicitly stated. For a complete list of funded drugs, specific indications, and approved prescribers, please refer to the [Outpatient Cancer Drug Benefit Program Master List](#).

Conflict of Interest Statements

***Dr. Meghan Mahoney**, medical oncologist, reports honoraria from AstraZeneca, Bayer, EMD Serono, Merck, and Pfizer; travel support from BMS, EMD Serono, Pfizer, and Merck; and participation on Pfizer's Data Safety Monitoring or Advisory Board.

Dr. Matthew R Anaka, medical oncologist, reports honoraria from Bristol Meyer Squibb, Pfizer, Merck, and Medison Pharma.

Dr. Thomas G Salopek, dermatologist, reports institutional grants from BMS, Merck, Novartis, Sanofi, Regeneron, and Pfizer; personal consulting fees from Meducom, Sanofi, Regeneron, Celltrion, Leo, Beiersdorf, Kenvue, Vichy, and Lilly; personal honoraria from Amgen and Johnson & Johnson; and personal expert-testimony payments from CADTH (CDA), CPSA, CPSBC, and CPSO.

Dr. Scott Strum, medical oncologist, reports participation on Pfizer's Advisory board.

Dr. Claire Temple-Oberle, plastic & reconstructive surgeon, has nothing to disclose.

Dr. Eva Thiboutot, surgical oncologist, has nothing to disclose.

Ellen de Jong, PhD, methodologist, has nothing to disclose.

*Working group lead

Citation

Mahoney M (lead), Anaka M, Salopek TG, Strum S, Temple-Oberle C, Thiboutot E, de Jong E. Cancer Care Alberta, Alberta Health Services (2026). Clinical Practice Guideline Systemic Therapy for Cutaneous Melanoma, Version 1. Accessed [Month, Year]. Available from: www.ahs.ca/guru