Lymphoma

Effective date: September 2023
Table of Contents

Background
Guideline Questions
Search Strategy
Target Population
Discussion
 I. Diagnosis and Pathologic Classifications (Last reviewed: Sep 2023)
 II. Staging (Last reviewed: Sep 2023)
 III. Treatment of Non-Hodgkin Lymphomas (Last reviewed: Sep 2023)
 IV. Cutaneous Lymphoma (Last reviewed: Jul 2021)
 V. Hodgkin Lymphoma (Last reviewed: Sep 2023)
 VI. HDCT and Hematopoietic Stem Cell Transplantation for Lymphoma (Last reviewed: Sep 2018)
 VII. Supportive Care in the Treatment of Lymphoma (Last reviewed: Sep 2019)
 VIII. Follow-Up Care in the Treatment of Lymphoma (Last reviewed: Sep 2023)

Appendix A (Chemotherapy Regimens)
Appendix B: General Radiotherapy Guidelines
Appendix C: Prognostic Models
Appendix D: Lymphoma Response Criteria
Appendix E: New Lymphoma Patient Data Sheet
Appendix F: Ideal Body Weight
Glossary of Abbreviations
Dissemination
Maintenance
Background

Lymphomas encompass a group of lymphoproliferative malignant diseases that originate from T- and B-cells in the lymphatic system. Traditionally, lymphomas have been subcategorized into two groups: Hodgkin lymphoma and non-Hodgkin lymphoma. It is now known however, that Hodgkin lymphoma is simply one of the numerous varieties of lymphoma, and that non-Hodgkin lymphoma is a fairly meaningless term, representing all of the other subtypes of this disease.

Non-Hodgkin lymphoma involves a heterogeneous group of over 40 lymphoproliferative malignancies with diverse patterns of behaviours and responses to treatments. Non-Hodgkin lymphoma is much less predictable than Hodgkin lymphoma and prognosis depends on the histologic type, stage, and treatment. In Canadian males and females, the incidence rates for non-Hodgkin lymphoma showed a marked increase by approximately 50% between 1978 and the late 1990s, but have since stabilized¹. Mortality rates have followed a similar pattern. The clearest risk factor for the disease is immunosuppression associated with HIV infection, or medications used to prevent rejection in organ transplantation. Other factors that increase risk of non-Hodgkin lymphoma are poorly understood but may include occupational exposures to pesticides, herbicides, and dioxins, as well as chronic immune stimulation associated with autoimmune disorders (e.g. thyroiditis, Sjogren’s Syndrome, SLE) or infections (e.g. Helicobacter pylori gastritis, hepatitis C virus)². In 2015, it is estimated that 8200 new cases of non-Hodgkin lymphoma will be diagnosed in Canada, and 2650 deaths will occur, making non-Hodgkin lymphoma the sixth most common cause of cancer-related death in Canada³.

Hodgkin lymphoma is a malignancy characterized histopathologically by the presence of Reed-Sternberg cells in the appropriate cellular background. Although rare, Hodgkin lymphoma is one of the best-characterized malignancies of the lymphatic system and one of the most readily curable forms of malignant disease.² The incidence rate has remained fairly steady over time, it is estimated that approximately 1000 new cases of Hodgkin lymphoma are diagnosed in Canada each year³. It is important to note that lymphoma also represents the most commonly diagnosed non-epithelial cancers in adolescents and young adults in Canada. Between 1992 and 2005, 5577 new cases of Hodgkin and non-Hodgkin lymphoma were diagnosed in Canadians aged 15-29 years¹. The following guidelines do not address lymphoma in the pediatric or adolescent populations.

Guideline Questions

- What are the diagnostic criteria for the most common lymphomas?
- What are the staging and re-staging procedures for Hodgkin and non-Hodgkin lymphomas?
- What are the recommended treatment and management options for Hodgkin and non-Hodgkin lymphomas?
- What are the recommended follow-up procedures for patients with malignant Hodgkin and non-Hodgkin lymphoma?
Search Strategy

Medical journal articles were searched using Medline (1950 to October Week 1, 2015), EMBASE (1980 to October Week 1, 2015), Cochrane Database of Systematic Reviews (3rd Quarter, 2015), and PubMed electronic databases. An updated review of the relevant existing practice guidelines for lymphoma was also conducted by accessing the websites of the National Comprehensive Cancer Network (NCCN), Cancer Care Ontario (CCO), the British Columbia Cancer Agency (BCCA), the European Society for Medical Oncology (ESMO), and the British Committee for Standards in Haematology.

Target Population

The following guidelines apply to adults over 18 years of age. Different principles may apply to pediatric and adolescent patients.

References

I. Diagnosis and Pathologic Classification ¹-⁶

Sufficient tissue is required for the diagnosis of lymphoma. Fine needle aspirates are not sufficient and only lead to diagnostic delays. Historically, a surgical biopsy was recommended but more recent data, including a comparative study, have demonstrated that a well-performed radiology-guided core needle biopsy provides equivalent diagnostic accuracy with less complications⁷. Cancer Care Alberta now supports diagnostic pathways for many cancers including lymphoma ([Lymphoma Diagnosis Program](#)). All patients who are considered highly likely to have lymphoma should be referred to the LDP to expedite appropriate diagnostic and staging investigations.

Table 1 describes the histologic subclassification of the malignant lymphomas, and is an adaptation of the most recent WHO classification⁶. This classification is based on the light microscopic interpretation complemented by special stains, immunophenotyping, cytogenetics and other ancillary information as available. The specific lymphomas are divided into three major groups, according to the degree of clinical aggressiveness, for treatment planning. All B-cell lymphomas should be immuno-phenotyped to determine if they are CD20 positive.
Table 1. Lymphoma classification.

<table>
<thead>
<tr>
<th>B-cell</th>
<th>T-cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indolent</td>
<td></td>
</tr>
<tr>
<td>Follicular, grades 1-2, 3a</td>
<td>Mycosis fungoides /Sezary syndrome</td>
</tr>
<tr>
<td>Small lymphocytic Lymphoma/Chronic Lymphocytic Leukemia</td>
<td>Primary cutaneous, CD30+</td>
</tr>
<tr>
<td>Marginal zone, extranodal (MALT)</td>
<td>Primary cutaneous periheral T-cell lymphoma</td>
</tr>
<tr>
<td>Splenic marginal zone</td>
<td>PTCL, CD30-</td>
</tr>
<tr>
<td>Marginal zone, nodal (monocytoid B-cell)</td>
<td>T-cell large granular lymphocytic leukemia</td>
</tr>
<tr>
<td>Lymphoplasmacytic (Waldenström’s macroglobulinemia)</td>
<td></td>
</tr>
<tr>
<td>Primary cutaneous, follicle centre</td>
<td></td>
</tr>
<tr>
<td>Hairy cell leukemia</td>
<td></td>
</tr>
<tr>
<td>Nodular lymphocyte predominant Hodgkin Lymphoma</td>
<td></td>
</tr>
<tr>
<td>Mantle cell (can be aggressive)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggressive</td>
<td></td>
</tr>
<tr>
<td>Diffuse large B-cell</td>
<td>Peripheral T-cell, unspecified</td>
</tr>
<tr>
<td>o T-cell/histocyte-rich DLBCL</td>
<td>Angioimmunoblastic (AITL. formerly AILD)</td>
</tr>
<tr>
<td>o Primary DLBCL of the CNS</td>
<td>Enteropathy associated T-cell</td>
</tr>
<tr>
<td>o Primary cutaneous DLBCL, leg-type</td>
<td>Hepatosplenic T-cell</td>
</tr>
<tr>
<td>o EBV-positive DLBCL of the elderly</td>
<td>Subcutaneous panniculitis-like</td>
</tr>
<tr>
<td>DLBCL associated with chronic inflammation</td>
<td>Anaplastic large cell (CD30+) ALK+</td>
</tr>
<tr>
<td>Lymphomatoid granulomatosis</td>
<td>Anaplastic large cell (CD30+) ALK-</td>
</tr>
<tr>
<td>Primary mediastinal large B-cell</td>
<td>Extranodal NK/T-cell, nasal type</td>
</tr>
<tr>
<td>Intravascular large B-cell</td>
<td></td>
</tr>
<tr>
<td>ALK positive large B-cell</td>
<td></td>
</tr>
<tr>
<td>Plasmablastic lymphoma</td>
<td></td>
</tr>
<tr>
<td>LBCL in HHV8-associated Castleman disease</td>
<td></td>
</tr>
<tr>
<td>Primary effusion lymphoma</td>
<td></td>
</tr>
<tr>
<td>Follicular grade 3b (large cell)</td>
<td></td>
</tr>
<tr>
<td>Classical Hodgkin lymphoma</td>
<td></td>
</tr>
<tr>
<td>⇒ Nodular sclerosis</td>
<td></td>
</tr>
<tr>
<td>⇒ Mixed cellularity</td>
<td></td>
</tr>
<tr>
<td>⇒ Lymphocyte rich</td>
<td></td>
</tr>
<tr>
<td>⇒ Lymphocyte depleted</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Special</td>
<td></td>
</tr>
<tr>
<td>Burkitt lymphoma</td>
<td>T lymphoblastic leukemia/lymphoma</td>
</tr>
<tr>
<td>Intermediate between DLBCL and BL</td>
<td>Adult T-cell leukemia/lymphoma (ATLL)</td>
</tr>
<tr>
<td>Intermediate between DLBCL and Hodgkin lymphoma</td>
<td>T prolymphocytic leukemia</td>
</tr>
<tr>
<td>B lymphoblastic leukemia/lymphoma</td>
<td></td>
</tr>
<tr>
<td>B prolymphocytic leukemia</td>
<td></td>
</tr>
<tr>
<td>Lymphomas associated with HIV infection</td>
<td></td>
</tr>
<tr>
<td>Post-transplant lymphoproliferative disorders (PTLD)</td>
<td></td>
</tr>
<tr>
<td>o Plasmacytic hyperplasia and infectious mononucleosis-like PTLD</td>
<td></td>
</tr>
<tr>
<td>o Polymorphic PTLD</td>
<td></td>
</tr>
<tr>
<td>o Monomorphic PTLD</td>
<td></td>
</tr>
<tr>
<td>o Classical Hodgkin-type PTLD</td>
<td></td>
</tr>
<tr>
<td>Other iatrogenic immunodeficiency-associated lymphomas</td>
<td></td>
</tr>
</tbody>
</table>
Required Immunohistochemical and Ancillary Testing for Lymphoma

In general, guidelines for using the various ancillary methods, including immunohistochemical and fluorescence in situ hybridization (FISH) testing as outlined in the most recent version of the World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues should be followed so as to confirm a specific diagnosis and provide necessary prognostic and/or predictive information\(^6\). In addition, the following are recommended by the Alberta Provincial Hematology Tumour Team\(^8,9\):

1. **Classical Hodgkin Lymphoma:** The immunohistochemical panel may include CD45/CD3/CD20/CD30/CD15/ PAX5/MUM1 and should be selected on a case by case basis at the discretion of the hematopathologist. EBV studies by in situ hybridization (EBER) may be considered if difficulty exists diagnostically, as most cases of the mixed-cellularity subtype of classical Hodgkin lymphoma are EBER positive.

2. **Diffuse Large B-Cell Lymphoma (DLBCL):**
 - Immunohistochemical (IHC) panels to distinguish between Activated B Cell (ABC) type and Germinal Centre B-cell (GCB) cell of origin (COO) types have limitations (regardless of which algorithm is employed) when compared to gene expression profiling\(^9,10\). However, GCB vs non-GCB COO by IHC does correlate with survival rates following RCHOP chemotherapy, and therefore adds prognostic information when managing DLBCL. The Alberta hematopathologists currently use a simple algorithm published by Hans et al, requiring IHC stains for CD10, BCL6 and MUM1, in which CD10+ or BCL6+/ MUM1- cases are designated as GCB COO, whereas cases negative for negative/BCL6+/MUM1+ phenotype are considered to have a non-GCB COO.
 - EBER and CD5 expression confer worse prognosis, and may be used to identify various clinical-pathological entities with distinct implications. Determining CD5 expression should be considered on all DLBCL cases. EBER should be performed in patients with immune suppression related lymphomas, or those who possibly have EBV-related DLBCL (consider past the age of 50)\(^11\).
 - Rearrangements of the C-MYC gene as determined by FISH, especially in association with \(BCL2\) and/or \(BCL6\) (so called "double hit" or "triple hit" disease) are associated with very poor outcomes following R-CHOP therapy, as well as high rates of central nervous system relapse. Patients with a double-hit or triple-hit lymphoma under age 70 years should receive more aggressive therapy and possibly stem cell transplantation. Though it represents approximately only 5-10% of DLBCL cases\(^12\), it is very important to recognize these patients, and therefore, \(MYC\) rearrangement testing by FISH is to be performed on all patients younger than 70 y.o. with the appropriate lymphoma histology, i.e. DLBCL or lymphoma that are so called "unclassifiable" with intermediate morphological features between DLBCL and Burkitt. If MYC is rearranged, the case should also undergo \(BCL2\) and \(BCL6\) rearrangement testing by FISH. MYC and \(BCL2\) test results are required within 2 weeks of diagnoses for all new patients within the appropriate diagnostic category and age group. FISH testing may also be performed in select instances at
the discretion of the reporting hematopathologist if such studies are deemed diagnostically useful.

- Immunohistochemical studies cannot be used as a surrogate for MYC rearrangement.
- However, the detection of MYC and BCL2 concurrent overexpression by IHC in so-called “dual expressor” DLBCL, identifies a numerically significant subset of the DLBCL with potentially similar aggressive behavior compared to double-hit lymphoma cases, but representing a distinct group of patients (more often an ABC subtype as opposed to double hit DLBCL which are usually GCB). This group is also associated with a high rate of CNS relapse12. Therefore, provided adequate benchmarks and interpretation standards can be established for reproducibility, IHC for MYC and BCL2 expression should also be strongly considered on all DLBCL cases10, 13.

3. **Follicular Lymphoma:** must document grade (1-2, 3a or 3b), because all grade 3b should receive R-CHOP rather than other chemotherapy regimens. Also, if a diffuse pattern is present, this should be specified and a relative proportion noted, as outlined in the WHO Classification.

4. **Peripheral T-Cell Lymphoma:** cytotoxic T-cell markers (CD8/CD57/Granzyme B) correlate with poor prognosis and should be considered. Notably, however, peripheral T cell lymphomas are not classified on the basis of these phenotypic markers. EBV studies by in situ hybridization (EBER) should be performed in cases where angioimmunoblastic T cell lymphoma (AITL) and extranodal T/NK cell lymphoma, nasal type enter in the differential diagnosis.

5. **Mantle Cell Lymphoma:** Evidence of CyclinD1 deregulation confirmed by IHC (positive staining for CyclinD1) and/or FISH (positive for t(11;14)) is needed to confirm the diagnosis, provided other morphophenotypic findings are consistent with the diagnosis. Poor prognostic features must be mentioned in the report, including blastoid and pleomorphic morphologic variants. The proliferation index as measured by Ki67 or Mib-1 (used to calculate MIPI score) is to be reported. In cases where it is difficult to differentiate MCL from CLL, flow cytometry for CD200 and IHC for SOX11 may be performed14. For patients who are deemed transplant-eligible (i.e. age <65 and fit for intensive therapy), *TP53* mutational testing should be performed at time of diagnosis to identify high-risk patients more appropriate for allogeneic stem cell transplantation 15.

www.ahs.ca/guru
References

II. Staging 1-12

Mandatory Staging Procedures

- Pathology review whenever possible (essential for core needle biopsies)
- Complete history and physical examination stating ECOG Performance Score, B symptoms
- CBC & differential, creatinine, electrolytes, Alk P, ALT, LDH, bilirubin, total protein, albumin, calcium
- Hepatitis B Surface Antigen (HBsAg), Hepatitis B Surface Antibody (anti-HBs), and Hepatitis B Core Antibody (total anti-HBc) must be done prior to initiating chemo/immunotherapy. Patients who are HBsAg positive are either acutely or chronically infected and require consultation with Hepatology. Patients who are HBsAg negative/anti-HBc positive (regardless of anti-HBs titre levels) and are going to be treated with B-cell depleting therapy (e.g. rituximab) should receive prophylactic therapy with entecavir or tenofovir. Those who are HBsAg negative/anti-HBc positive and fall under low or moderate risk as per Table 1 do not require prophylaxis and should undergo serial HBV DNA testing q6-12 months and serial ALT testing q3 months while on immunosuppressive therapy (see Figure 1). Hepatitis B prophylactic therapy should be continued for at least 6 months following the completion of immunosuppressive therapy, except for those treated with anti-CD20 agents who should continue for at least 12-18 months due to the lag in B-cell function recovery.13-17

Table 1: Risk of HBV reactivation with immunosuppression and chemotherapy in HBsAg-positive and HBsAg-negative/anti-HBc-positive patients.

<table>
<thead>
<tr>
<th>Risk group and HBV serology</th>
<th>Immunosuppressive or chemotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-risk group (>10%)</td>
<td></td>
</tr>
<tr>
<td>HBsAg positive</td>
<td>B-cell depleting agents such as</td>
</tr>
<tr>
<td>OR</td>
<td>rituximab and obinutuzumab</td>
</tr>
<tr>
<td>HBsAg negative and anti-HBc</td>
<td>Anthracycline derivatives such as</td>
</tr>
<tr>
<td>positive (high risk regardless of anti-HBs titre levels)</td>
<td>doxorubicin and epirubicin</td>
</tr>
<tr>
<td></td>
<td>Corticosteroid therapy for ≥ 4 weeks (prednisone equivalent > 10-20 mg/day)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate-risk group (1%-10%)</td>
<td></td>
</tr>
<tr>
<td>HBsAg positive</td>
<td>TNF-α inhibitors: etanercept,</td>
</tr>
<tr>
<td>OR</td>
<td>adalimumab, certolizumab, infliximab</td>
</tr>
<tr>
<td>HBsAg negative and anti-HBc</td>
<td>Other cytokine inhibitors and integrin inhibitors: abatacept, ustekinumab,</td>
</tr>
<tr>
<td>positive</td>
<td>natalizumab, vedolizumab</td>
</tr>
<tr>
<td></td>
<td>Tyrosine kinase inhibitors: imatinib,</td>
</tr>
</tbody>
</table>
nilotinib, ibrutinib

<table>
<thead>
<tr>
<th>HBsAg positive</th>
<th>• Corticosteroid therapy for ≥ 4 weeks (prednisone equivalent < 10 mg/day)</th>
</tr>
</thead>
</table>
| HBsAg negative and anti-HBc positive (may be lower risk and monitoring may be sufficient if high anti-HBs titres > 100 IU/L) | • Corticosteroid therapy for ≥ 4 weeks (prednisone equivalent > 10-20 mg/day)
• Anthracycline derivatives: doxorubicin and epirubicin |

Low-risk group (<1%)

| HBsAg positive OR HBsAg negative and anti-HBc positive (low risk especially if high anti-HBs titres > 100 IU/L) | • Traditional immunosuppressive agents: azathioprine, 6-mercaptopurine, methotrexate
• Intra-articular corticosteroids
• Corticosteroid therapy for ≤ 1 week |
| HBsAg negative and anti-HBc positive (low risk especially if high anti-HBs titres > 100 IU/L) | • Corticosteroid therapy for ≥ 4 weeks (prednisone equivalent < 10 mg/day) |

Adapted from Coffin, Carla S., et al.

Anti-HBc = antibody to HBV core; anti-HBs = antibody to HBsAg; HBsAg = hepatitis B surface antigen; HBV = hepatitis B virus; TNF = tumour necrosing factor.

- ESR (for early stage Hodgkin lymphoma)
- Beta-2-microglobulin (for follicular lymphoma)
- Serum protein electrophoresis and quantitative IgG, IgA, and IgM for indolent B-cell lymphomas
- Pregnancy test: if at risk
- Bone marrow biopsy in iNHL (nodal MZL, FL) can be reserved for situations of confirming limited stage or investigating unexplained cytopenias. Bone marrow biopsy may be deferred altogether in MALT lymphoma unless for investigating unexplained cytopenias.
- Bone marrow biopsy is not required for Hodgkin lymphoma or DLBCL if a staging PET/CT is performed. PET scan does not reliably predict bone marrow involvement in histologies other than HL or DLBCL.
- Bone marrow biopsy is discretionary for full staging of other aggressive histologies (e.g. PTCL-NOS) as it provides prognostic information but seldomly influences treatment selection
- PET/CT is the preferred staging modality for most FDG-avid nodal lymphomas. PET/CT is especially important for patients who otherwise have non-bulky, stage I-IIA lymphoma, and are

www.ahs.ca/guru
being considered for involved field radiation (IFRT) following abbreviated (or no) chemotherapy. PET/CT is not necessarily required for follicular lymphoma if the results will not change management, particularly for a patient who will likely undergo watchful waiting.

- There are circumstances where a contrast enhanced CT alone is adequate or the preferred imaging modality:
 - Variably FDG avid histologies (chronic lymphocytic leukemia/small lymphocytic lymphoma, lymphoplasmacytic lymphoma, mycosis fungoides, and marginal zone lymphoma)
 - urgent treatment is indicated, and PET/CT is not readily available
 - patient unable to access PET/CT due to travel distance
 - to accurately distinguish bowel from lymphadenopathy when clinically relevant
 - for identifying compression/thrombosis of central/mediastinal vessels if clinical suspicion
 - for accurate measurements of nodal size, particularly for clinical trial

<table>
<thead>
<tr>
<th>Table 2. Selected non-routine tests and required presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
</tr>
<tr>
<td>CSF and MRI Brain with gad</td>
</tr>
<tr>
<td>ENT exam</td>
</tr>
<tr>
<td>UGI & SBFT</td>
</tr>
<tr>
<td>Ophthalmologic (slit lamp) exam</td>
</tr>
<tr>
<td>HIV serology</td>
</tr>
<tr>
<td>Cardio-oncology imaging (MR or Echocardiogram)</td>
</tr>
<tr>
<td>Pulmonary function tests</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3. Staging system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage</td>
</tr>
<tr>
<td>Stage I</td>
</tr>
<tr>
<td>Stage II</td>
</tr>
<tr>
<td>Stage III</td>
</tr>
</tbody>
</table>
Stage IV

Diffuse involvement of one or more extralymphatic organs or sites
- A: No B symptoms
- B: at least one of the following: unexplained weight loss >10% baseline within 6 months of staging, unexplained fever >38°C, or drenching night sweats

*Suffix A or B used only for Hodgkin lymphoma (Lugano, 2014)

For treatment planning, patients are divided into two groups by stage:

1. Limited Stage: Non-bulky stage IA(E) or IIA(E) (≤ 3 adjacent lymph node regions)
2. Advanced Stage:
 - Stage II involving >3 or non-adjacent lymph node regions
 - or stage III or IV
 - or B symptoms
 - or bulky tumour mass (≥10cm)
Restaging Schedule

1. The following are to be performed prior to each chemotherapy treatment:
 - Clinical parameters: brief history and physical examination, toxicity notation, ECOG status
 - Bloodwork:
 - CBC/differential/platelet
 - also consider EP/creatinine and LFTs

2. Requirements for CT scanning of chest/ abdomen/ pelvis:
 - Routine CT scanning:
 - after 3 months (4 cycles) of therapy and again after completion of all therapy for Non-Hodgkin Lymphomas
 - if a residual mass is seen on the CT after completion of all therapy, then repeat a PET/CT for aggressive lymphoma to determine partial or complete remission.
 - a repeat CT scan should be considered 6-12 months post-treatment; otherwise, no further routine CT scans are required
 - Hodgkin lymphoma patients should undergo a PET/CT after 2 cycles ABVD (rather than CT after 4 cycles) as outlined below in the Hodgkin Lymphoma treatment guidelines.
 - Consider a surveillance CT after 1 year of diagnosis of iNHL on watch and wait
 - Other requirements for CT scanning:
 - as indicated to investigate clinical signs or symptoms, or abnormal laboratory tests

3. Bone marrow aspirate & biopsy (with sample sent for flow cytometry):
 - Repeat for transplant-eligible patients with aggressive histology lymphomas who otherwise are in complete remission after completion of chemotherapy, if marrow was positive at diagnosis

4. PET/CT Imaging:
 - Assessment of residual radiographic or clinical abnormalities of uncertain significance at the time of re-staging following completion of therapy.
 - Hodgkin lymphoma patients should undergo a PET/CT after 2 cycles ABVD (rather than CT after 4 cycles) as outlined below in the Hodgkin Lymphoma treatment guidelines.

Table 4. PET result significance and treatment recommendations.

<table>
<thead>
<tr>
<th>PET Result</th>
<th>Final Response</th>
<th>Treatment Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative</td>
<td>Complete</td>
<td>Observation</td>
</tr>
<tr>
<td>Positive</td>
<td>Partial</td>
<td>Consider biopsy, IFRT, or HDCT/ASCT versus observation</td>
</tr>
</tbody>
</table>
References

III. Treatment of Non-Hodgkin Lymphomas

Treatment of non-Hodgkin lymphomas is based on histologic subtype, extent of disease, and age of the patient. In the case of discordant (2 separate sites of disease with differing types of lymphoma), composite (1 site of disease with 2 discrete types of lymphoma at that site), or transformed (a second lymphoma developing out of a background of previously known lymphoma) lymphoma, treatment must be directed at the most aggressive phase of the disease. Approaches outlined for aggressive lymphomas are generally applicable to both B- and T-cell types. However, treatments for lymphomas presenting at special sites, poor prognosis lymphomas in younger patients, and lymphomas arising in association with immunodeficiency (HIV, post-organ transplant) are outlined in the section titled “Special Problems in Lymphoma Management” below.

Diffuse Large B-Cell Lymphoma (DLBCL)

Table 1. Initial therapy of DLBCL/aggressive CD20+ lymphomas without MYC and BCL2 rearrangement by FISH.

<table>
<thead>
<tr>
<th>Stage</th>
<th># Risk Factors</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited stage defined by PET with bulk <10cm</td>
<td>sm-IPI = 0; sm-IPI = 1 due to age >60 or stage II</td>
<td>R-CHOP x 4 cycles if CR by PET/CT 14-21 days after 3rd cycle; R-CHOP x6 with IFRT (30-35 Gy) if PR by PET/CT after 3rd cycle; R-CHOP x3 plus IFRT for patients unable to tolerate more than 3 cycles; R-CHOP x6 for patients unable to undergo interim PET or R-CHOPx4 for patients meeting FLYER criteria (age 18-60, stage I-II, normal LDH, ECOG 0-1, bulk <7.5 cm)</td>
</tr>
<tr>
<td>Limited stage with bulk <10cm</td>
<td>sm-IPI = 2-4; sm-IPI = 1 due to elevated LDH or ECOG >1</td>
<td>R-CHOP x6 cycles with no IFRT if CR by PET/CT 14-21 d after 3rd cycle RCHOP; R-CHOP x 6 cycles plus IFRT (30-35Gy) if only PR by PET/CT after 3rd cycle RCHOP; RCHOP x3 plus IFRT for patients unable to tolerate more than 3 cycles</td>
</tr>
<tr>
<td>Advanced, or limited stage with bulk ≥10 cm</td>
<td>IPI 0-3 or age >~70 yrs or unfit</td>
<td>R-CHOP x 6 cycles possibly followed by IFRT (30-35Gy) if localized non-progressing PET+ residual disease by PET/CT 21-28d after 6th cycle RCHOP</td>
</tr>
<tr>
<td>Advanced</td>
<td>IPI 4-5 and age <70 years</td>
<td>Acceptable alternatives: R-CHOP x 6 cycles followed by IFRT (30-35Gy) if localized non-progressing PET+ residual disease by PET/CT 21-28d after 6th cycle RCHOP; R-CHOP x4-6 then high-dose chemotherapy/ASCT in first remission. Especially recommended if PET+ after RCHOPx4.</td>
</tr>
</tbody>
</table>

1. Stage-modified IPI (sm-IPI) Risk Factors for Limited Stage: increased LDH, stage II, ECOG performance status 2-4, age>60 years.
2. IPI Risk Factors for Advanced Stage: increased LDH, stage III/IV, >1 Extranodal Site, ECOG 2-4, age>60 years.
3. R-CEOP (with etoposide 50mg/m2 IV day 1 and 100mg/m2 po days 2-3) can be used for DLBCL patients who have reduced left ventricular ejection fraction or prior maximum cumulative anthracycline exposure (Blood Adv 2021;5(5):1483). The use of R-CEOP should be limited to patients with an absolute contraindication to anthracyclines, as an Alberta study found that R-CEOP was associated with inferior 4-year PFS (32% vs 52%) and OS (39% vs 59%) compared to R-CHOP (Leuk Lymph 2022;63(3):583).

www.ahs.ca/guru
4. For patients >age 60 years, 3-7 days of prednisone 100mg/day pre-R-CHOP as well as G-CSF prophylaxis are recommended to decrease toxicity.

Treatment of Limited-Stage DLBCL

Limited-stage DLBCL is associated with favorable outcomes with long-term survival rates up to 80%, although a persistent pattern of late relapses has been described in up to 20-30% of patients. The stage-modified IPI score risk stratifies patients according to the following factors: age >60, stage II, elevated LDH, ECOG >1. In the pre-rituximab era, the phase III SWOG S8736 trial reported superior PFS and OS with CHOP×3 plus RT versus CHOP×8; however, due to the occurrence of late relapses and treatment complications, there was no difference in PFS or OS between the two strategies with long-term follow-up. In the rituximab era, the MInT trial established R-CHOP x6 as the standard of care for most patients with limited-stage DLBCL. Given the favorable outcomes of limited-stage DLBCL, recent studies have assessed the role for treatment de-escalation to minimize toxicity while preserving efficacy. The LYSA/GOELAMS 02-03 trial of 334 patients with stage I-II non-bulky (<7cm) DLBCL demonstrated that R-CHOP alone is non-inferior to R-CHOP + RT if CR is achieved on interim PET after cycle 4; in addition, 4 cycles of R-CHOP was found to be sufficient for interim PET-negative patients with 0 sm-IPI risk factors. The phase III FLYER trial found that 4 cycles of R-CHOP has reduced toxicity and non-inferior efficacy compared to 6 cycles for patients with stage I-II non-bulky (<7.5cm) DLBCL with no other sm-IPI risk factors. In addition, the phase II SWOG S1001 trial and real-world data from BC Cancer demonstrated excellent PFS rates with 4 cycles of R-CHOP if CR is achieved after cycle 3, even in patients with up to 2 sm-IPI risk factors. Finally, the LYSA LNH 09-1B trial found that R-CHOP×4 is non-inferior to R-CHOP×6 if CR is achieved on interim PET after cycle 2 for patients with stage I-II DLBCL up to age 80 with normal LDH and ECOG 0-1. Together, these studies demonstrate that patients with 0 or 1 sm-IPI risk factors (age >60 or stage II disease) can be treated with 4 cycles of R-CHOP if they achieve CR on interim PET. Patients being considered for treatment de-escalation should undergo baseline PET rather than CT to ensure accurate staging. Higher-risk limited-stage patients with sm-IPI 2-4 or those with elevated LDH or ECOG >1 were not well-represented in the above trials and should continue to receive 6 cycles of R-CHOP even if CR is achieved on interim PET. The optimal treatment of patients with PR on interim PET is unknown, but our preferred approach is R-CHOP×6 plus RT as this was shown to result in similar outcomes as interim PET-negative patients in the LYSA/GOELAMS 02-03 trial.

Role for Consolidative Radiation Therapy in DLBCL

As mentioned above, the only randomized trial of combined modality therapy versus chemoimmunotherapy alone in limited-stage DLBCL (LYSA/GOELAMS 02-03) found the addition of RT did not improve outcomes over R-CHOP alone among patients achieving CR on interim PET. However, the administration of RT after 6 cycles of R-CHOP appeared to overcome the poor prognostic impact of a positive interim PET, as these patients experienced similar outcomes as interim PET-negative patients. For advanced-stage DLBCL, a large retrospective analysis from BC Cancer of 723 patients treated with R-CHOP x6 +/- consolidative RT to focal sites of PET+ disease at end-of-treatment found that patients achieving negative PET have excellent outcomes without RT, including those with bulky disease and skeletal involvement at diagnosis. In addition, patients with non-progressing PET+ disease treated with RT had outcomes approaching those of PET-negative patients, suggesting a potential benefit of RT. As such, we recommend consolidative RT only for patients with (1) limited-stage DLBCL with positive interim PET or (2) advanced-stage DLBCL with...
localized non-progressing PET+ residual disease on end of treatment PET. There is no evidence for improved PFS or OS when RT is used for patients who achieve CMR on restaging PET and therefore, it is not recommended.

HDCT/ASCT as Part of Initial Therapy for DLBCL

Randomized phase 3 trials have demonstrated improved PFS but not OS with first remission consolidation with ASCT compared to RCHOP alone for aalPI=2-3 DLBCL patients. Most recently, Chiapella *et al.* (2017) evaluated Rituximab-dose-dense chemotherapy with or without HDCT/ASCT in 412 patients with aalPI=2-3 DLBCL (DCLCL04), and reported improved PFS but not OS with ASCT consolidation. This is similar to the US intergroup/NCIC study reported by Stiff *et al.* (2013), however, in the latter study, patients who had aalPI=3 experienced statistically significant improvements in 2yr PFS (75% vs 43%) as well as OS (82% vs 64%) with ASCT compared to RCHOP alone, respectively. aalPI does not adequately identify poor prognosis DLBCL in young patients, as evidenced by the OS of 75-80% for aalPI=2 patients in the RCHOP-only arms of the US intergroup trial and the Italian DCLCL04 trial. Newer methods of identifying poor prognosis DLBCL patients include the use of interim or final PET+ response to RCHOP, as well as cell of origin (COO) GCB vs non-GCB, and MYC/BCL2 expression. Ennishi *et al.* (2017) reported very poor outcomes (5yr TTP <30%) for GCB DLBCL patients associated with high IPI scores and BCL2 translocations, as well as ABC DLBCL associated with high IPI scores and BCL2 gain/expression. In addition, several investigators have reported very low salvage rates for the use of ASCT for relapsed/refractory MYC/BCL2 dual protein expression DLBCL. However, determining COO by IHC algorithms is unreliable, and COO by nanostring Lymph2Cx GEP is not currently funded. The Positron Emission Tomography–Guided Therapy of Aggressive Non-Hodgkin Lymphomas (PETAL) study reported 5yr event-free survival from the day of negative vs positive interim PET scanning (change SUVmax 66%) as follows: 80% vs 40% for IPI=0-1, 60% vs 40% for IPI=2, 60% vs 30% for IPI=3, and 40% vs 10% for IPI=4-5. In Alberta, first-line consolidative ASCT has been considered a reasonable treatment option for patients with high-risk DLBCL with IPI score 4-5, especially those who have a positive interim PET after 4-6 cycles RCHOP (particularly as determined by change in SUVmax <66% from baseline). This is supported by a study of 114 patients with DLBCL and IPI score 4-5, in which consolidative ASCT resulted in 5-year PFS 72% and OS 74% with no significant difference in outcomes among those with or without high-risk features including double-hit lymphoma, non-GCB cell of origin, or interim PET positivity (Puckrin *et al.* 2023, unpublished). However, *this recommendation will not be supported by evidence when second-line CAR-T cell therapy is funded in Alberta and at that time, ASCT as a part of primary therapy will be infrequently pursued.*

Recommendations for CNS Prophylaxis

For DLBCL, factors associated with high risk (>10%) for relapse in the central nervous system include 4-6 of the following factors: 1) Age >60 years, 2) elevated LDH, 3) ECOG=2-4, 4) Stage 3-4, 5) >1 extranodal site of involvement, and 6) kidney or adrenal involvement. Other high risk situations

www.ahs.ca/guru
include double hit lymphoma (MYC + BCL2 and/or BCL6 translocations) and testicular lymphoma. Prophylactic intrathecal chemotherapy does not penetrate the brain parenchyma and has not been proven to decrease meningeal or parenchymal brain relapse of lymphoma in well-designed studies. Due to the lack of proven benefit, intrathecal chemotherapy cannot be recommended even in high-risk situations where the risk of CNS relapse is 10% or higher.

For patients at high-risk of CNS involvement, we previously recommended CNS prophylaxis with high dose intravenous methotrexate (HD-MTX) 3.5g/m² x 3 doses mid-cycle of R-CHOP following cycles 2, 4, 6. We recently reviewed our outcomes for patients who were treated according to our guidelines with a recommendation for incorporating intravenous HD-MTX for all patients with CNS-IPI score 4-6, double-hit lymphoma or testicular lymphoma. Among 906 patients treated for DLBCL, with a median follow-up of 35.3 months, CNS relapse risk was similar with and without intravenous MTX (11.2% vs 12.2%, p=0.82), with rates in high-risk patients comparable to previous reports in patients who did not receive CNS prophylaxis (10-12%). However, the risk of CNS relapse trended lower in patients who received consolidative ASCT or intensified chemo-immunotherapy versus R-CHOP (6.0% vs 14.6%, p=0.09). The ineffectiveness of prophylactic HD-MTX has been confirmed in several other multi-institutional retrospective studies, and there is evidence of increased toxicity and systemic chemoimmunotherapy delays in patients who receive HD-MTX intercalated with R-CHOP (Blood 2022; 139(16):2499). Given the lack of documented efficacy of intravenous HD-MTX and the associated inconvenience and toxicities, we no longer recommend prophylactic intravenous HD-MTX for DLBCL patients at high risk of CNS relapse.

Treatment of Relapsed/Refractory DLBCL

Patients fit for intensive therapy:

Approach to Rel/Ref DLBCL patients fit for intensive therapy

1. **Relapsed DLBCL >12 months from completion of RCHOP chemotherapy** – Patients should be offered salvage platinum-containing chemotherapy followed by high dose chemotherapy (HDCT) and autologous stem cell transplantation in chemo-sensitive patients
 - All patients, ECOG 0-2, with adequate organ function and absence of active infections with relapsed disease >12 months after initial RCHOP chemotherapy should be referred to the HSCT program as soon as possible.
 - Consider RDICEP over RGDP as the preferred salvage in this population
 - Potential transplant candidates should receive rituximab with salvage chemotherapy to maximize the chance of response, and in-vivo purge blood of tumour cells

2. **Relapsed/Refractory DLBCL <12 months from completion of RCHOP chemotherapy** – when publicly funded, patients should be referred for CAR T-cell therapy as second line therapy
• In lieu of CAR T therapy, patients should receive platinum-containing salvage chemotherapy:
 i. Relapse 3-12 months: Consider RDICEP over RGDP, particularly if non-rapid progression and normal LDH
 ii. Refractory disease: RGDP or RGemOx
• Those with less than PR can proceed to CAR T therapy, while those with chemo-sensitive disease can proceed with HDT-ASCT

3. Relapsed/Refractory DLBCL after two or more lines of therapy – patients should be referred for CAR T-cell therapy
• All patients with relapsed or refractory large B-cell lymphoma, transformed FL, or primary mediastinal B-cell lymphoma after two or more lines of systemic therapy, with ECOG 0-2, adequate organ function and absence of infections should be considered for CAR T-cell therapy
• Patients must have failed standard therapies (i.e. RCHOP first line and platinum-containing salvage chemotherapy) to be considered for CAR T therapy

Patients with chemo-refractory DLBCL and/or relapse early post ASCT have dismal prognosis with conventional therapies, with median survival of 6.3 months and only 20% of patients alive at 2 years (SCHOLAR-1 study).\(^73\) CAR T-cell therapy is an established treatment for adult patients with relapsed/refractory large B-cell lymphoma after two or more lines of therapy, with two immune effector cellular therapies approved in Canada, namely axicabtagene ciloleucel (axi-cel, Yescarta) and tisagenlecleucel (Kyrmiah). In the pivotal phase I/2 Zuma-1 study, 110/111 enrolled patients with refractory DLBCL, primary mediastinal B-cell lymphoma, or transformed follicular lymphoma received a single infusion of axi-cel, with CR rate of 52% and ongoing CR of 40% at 15.4 months of follow-up, and OS of 52% at 18 months.\(^74\) At 38.1 months median follow-up, the OS rate was 47% with median of 25.8 months.\(^75, 76\) In the phase 2 Juliet trial 93 patients with relapsed/refractory DLBCL or transformed follicular lymphoma received a single infusion of tisagenlecleucel, with CR of 40% and relapse-free survival of 65% at 12 months (79% in those who achieved CR).\(^77\) Lisocabtagene maraleucel (Liso-cel) is a third immune effector cell therapy being studied, and the TRANSCEND NHL001 study presented at ASH 2019 demonstrated similar efficacy data, with CR rate of 53%, and OS 57.9% at 1 year (85%/in patients with CR).\(^78\) The main toxicities of these therapies are cytokine release syndrome, neurotoxicity, cytopenias, and B-cell aplasia/hypogammaglobulinemia and as such this therapy is be administered only at centers approved for cellular therapy treatments.

Phase III trials with axi-cel and liso-cel as second line therapy compared to the standard salvage chemotherapy approach in patients with poor prognosis relapsed/refractory DLBCL <12 months from RCHOP chemotherapy have demonstrated superior event-free survival outcomes.\(^79\) Importantly, in both trials <50% of patients proceeded with an autologous stem cell transplantation, mainly due to lack of chemosensitive disease, and >50% of these patients subsequently proceeded with CAR T therapy in 3\(^{rd}\) line, with inferior outcomes. Review of 125 southern Alberta patients between 2015 and 2019 with relapsed/refractory DLBCL after RCHOP chemotherapy demonstrated that of the 50 patients that were intended for salvage and HDT-ASCT, only 28 underwent a stem cell transplant, with long-term cure in only 9 of these patients.\(^80\) These data suggest that while the current standard of care results in poor outcomes for most patients with relapsed/refractory DLBCL, the use of CAR T therapy second line could substantially increase the proportion of patients able to receive curative treatment at first progression.
Patients unfit for intensive therapy:

The prognosis of patients with relapsed/refractory DLBCL who are not candidates for cellular therapy is extremely poor, with median survival rates of less than 6 months, thus palliation is the main goal of any chosen therapy. Palliative-intent regimens including R-GemOx, polatuzumab vedotin with bendamustine/rituximab, and tafasitamab with lenalidomide have been studied in phase II trials of patients with r/r DLBCL who are unfit for intensive therapy:

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>R-GemOx</th>
<th>Pola + BR</th>
<th>Tafa + Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study population</td>
<td>49 ASCT-ineligible patients with r/r DLBCL and ECOG 0-2</td>
<td>106 ASCT-ineligible patients with r/r DLBCL and ECOG 0-2</td>
<td>80 ASCT-ineligible patients with r/r DLBCL and ECOG 0-2 (excluding primary refractory)</td>
</tr>
<tr>
<td>Administration</td>
<td>Time-limited therapy with simpler dosing</td>
<td>Time-limited therapy with simpler dosing</td>
<td>Indefinite therapy with frequent dosing</td>
</tr>
<tr>
<td>Efficacy</td>
<td>ORR 61% with CR 44% Median DOR 10 mos Median OS 11 mos</td>
<td>ORR 42% with CR 39% Median DOR 10 mos Median OS 13 mos</td>
<td>ORR 58% with CR 40% Median DOR 44 mos Median OS 34 mos</td>
</tr>
<tr>
<td>Notable toxicities</td>
<td>Myelosuppression Neurotoxicity</td>
<td>Myelosuppression Neuropathy</td>
<td>Myelosuppression Rash Thrombosis</td>
</tr>
<tr>
<td>Cost</td>
<td>Lower cost</td>
<td>High cost</td>
<td>High cost</td>
</tr>
</tbody>
</table>

Recommendations for treatment:

1. R-GemOx is the preferred second-line treatment because it is a well-established outpatient platinum-based regimen that is better tolerated in older patients than other regimens such as GDP, DHAP, or ICE, although it is associated with significant myelosuppression.

2. Polatuzumab, bendamustine, and rituximab can be considered for second or later relapses, and for patients who are unfit for, or intolerant of, R-GemOx. Patients should have reasonable performance status (ECOG 0-2) and adequate hematologic function to be expected to benefit from and tolerate polatuzumab with BR. Tafasitamab-lenalidomide is not approved or funded in Alberta. Bendamustine and tafasitamab should be avoided in patients potentially eligible for CAR-T cell therapy due to the respective risks of lymphodepletion and CD19 downregulation.

3. Some palliative patients at or beyond second relapse may have symptomatic benefit from prednisone alone, or low dose daily oral chemotherapy with chlorambucil 0.1mg/kg/day or etoposide 50mg/day, or combination oral therapy such as PEPC.

4. Involved field radiotherapy (IFRT) to symptomatic sites or localized relapses may also benefit these palliative patients.

5. Addressing goals of care and ensuring timely integration of palliative care should be a priority for all patients with r/r DLBCL who are unfit for intensive therapy.
Secondary CNS Lymphoma

Selected patients with CNS relapse/progression may be candidates for intensive therapy as outlined in Appendix A, subheading VIII. Favorable outcomes were reported in an Alberta study of 62 SCNSL patients with median age 58 years (range 20-75) intended for transplant, with ASCT rates of 84%, 5-year PFS 53% and OS 65% for all patients, and 5-year PFS 62% and OS 73% for those undergoing R-TBuM conditioning and ASCT. One of 3 induction regimens is recommended for transplant-eligible patients and one of two options for transplant ineligible patients, based on presentation:

1) Isolated CNS lymphoma: HDMTX-based induction then RDHAP for stem cell mobilization and collection, then R-TBuM/ASCT for transplant eligible (table A) or MATRix for patients who decline ASCT but are fit for intensive induction therapy or Cytarabine/Rituximab/Thiotepa outpatient regimen for transplant ineligible (PCNSL table C).

2) Early Systemic and CNS lymphoma (prior to completing RCHOP x6): RCHOP and HDMTX x4 cycles then RDHAP for stem cell mobilization and collection, then R-TBuM/ASCT for transplant eligible (table B) or RCHOP/MTX followed by AraC then ifosfamide in transplant ineligible (table E).

3) Late relapse (prior RCHOP x6) with systemic and CNS lymphoma: HDMTX-Ifosfamide-etopside x2 then RDHAP for stem cell mobilization and collection, then R-TBuM/ASCT for transplant eligible (table C) or palliation for transplant ineligible (table F).

Unfortunately, most patients with relapsed secondary CNS lymphoma experience poor response to salvage therapy, including high dose methotrexate/cytarabine-based regimens. These patients who are unfit to receive or do not respond to high dose methotrexate/cytarabine-based therapy are best managed with palliative intent, including consideration of palliative cranial radiotherapy.
Figure 1. Treatment algorithm for diffuse large B-cell lymphoma with no double hit (MYC/BCL2 rearrangements)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Advanced Stage (Stage III-IV), or Limited stage with bulk ≥10 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IPI score and age (co-morbid health)</td>
</tr>
<tr>
<td></td>
<td>IPI=0-3 or Age >70yrs</td>
</tr>
<tr>
<td></td>
<td>IPI=4-5 Age <70yrs</td>
</tr>
<tr>
<td></td>
<td>IPI=0-3 or IPI=2-4 or elevated LDH or ECOG >1</td>
</tr>
<tr>
<td></td>
<td>R-CHOP x 6 ± IFRT*</td>
</tr>
<tr>
<td></td>
<td>(ASCT PET+ post-RCHOPx4-6)</td>
</tr>
<tr>
<td></td>
<td>No CR or RELAPSE</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Eligible for intensive treatment?</td>
</tr>
<tr>
<td></td>
<td>- ECOG 0-2</td>
</tr>
<tr>
<td></td>
<td>-LVEF >45%, PFTs >50% predicted</td>
</tr>
<tr>
<td></td>
<td>-no active infection or cirrhosis/renal failure</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Palliative Rx or clinical trial</td>
</tr>
<tr>
<td></td>
<td>R-GemOx</td>
</tr>
<tr>
<td></td>
<td>Poia-BR</td>
</tr>
<tr>
<td></td>
<td>PEPC</td>
</tr>
<tr>
<td></td>
<td>IFRT</td>
</tr>
<tr>
<td></td>
<td>High Dose Therapy/ASCT</td>
</tr>
<tr>
<td></td>
<td>CAR T-cell Therapy</td>
</tr>
</tbody>
</table>

Treatment of special DLBCL entities 24-27, 65.

High-grade B-cell lymphoma with MYC and BCL2 rearrangements by FISH:

High-grade B-cell lymphoma with MYC and BCL2 rearrangements (double hit lymphoma or DHL) is associated with a poor prognosis, with a large multicenter retrospective analysis of 311 patients reporting an OS rate <50% if IPI=2-5 vs 65% for IPI=0-1 85. The optimal treatment of DHL is unknown, but intensive induction regimens such as da-EPOCH-R or R-CODOX-M/R-IVAC are commonly used and have demonstrated PFS benefit over R-CHOP in some retrospective studies 85 but not others 86. In addition, the use of consolidative HDT/ASCT has been associated with superior outcomes among
patients achieving CR after R-CHOP induction but not after intensive induction regimens. This suggests that DHL patients treated with R-CHOP can be considered for ASCT consolidation, especially if IPI=2-5 at diagnosis, however other patients who achieve CR after an intensive induction regimen probably should not receive ASCT consolidation. A retrospective analysis of 99 patients with DHL in Alberta found relatively favorable outcomes with 4-year PFS 59% and OS 66%, with no significant difference in PFS or OS between patients treated with intensive induction regimens vs intention-to-transplant following R-CHOP induction. Among the 48 patients intended for ASCT, outcomes were excellent for the 75% of patients undergoing upfront ASCT with 4-year PFS 80-90%, whereas there were no survivors among the 25% of patients with primary refractory disease. This suggests that upfront ASCT can achieve durable remissions in the majority of DHL patients with chemosensitive disease, whereas alternative strategies such as CAR-T cell therapy should be strongly considered for patients with chemorefractory disease.

Of note, the 2023 WHO and ICC lymphoma classifications consider MYC and BCL6 rearranged cases to be an indistinct and biologically heterogenous group. Given that the prognosis and management of these cases is uncertain, it is now recommended that patients with MYC and BCL6 rearrangements (but no BCL2 rearrangement) should be treated as high-risk DLBCL NOS rather than as double-hit lymphoma.

Alberta recommendations for high-grade B-cell lymphoma with MYC and BCL2 rearrangements:

- IPI=0-1: R-CHOP x 6 cycles or da-EPOCH-R x 6 cycles
- IPI=2-5: Options include:
 - A. R-CHOP x 2-3 cycles then restaging PET (or CT if PET not readily available) with responding patients proceeding to R-DICEP x1 then R-BuMel/ASCT. Patients refractory to R-CHOP are unlikely to respond to second-line chemotherapy and should be considered for CAR-T cell therapy as soon as possible.
 - B. DA-EPOCH-R or R-CODOX-M/R-IVAC

DLBCL with MYC single-hit translocation by FISH

1. MYC-rearranged DLBCL (or high-grade B-cell lymphoma NOS) but no translocation of BCL2 or BCL6: R-CHOP x 6 cycles for most patients. However, for the poor prognosis situation of MYC translocated and age <70 years and IPI 4-5 with interim PET+ disease: R-CHOP x4 then RDHAP or RDICEP x1, then HDCT/ASCT. Alternatively R-CODOX-M/IVAC or DA-EPOCH-R could be considered.

B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and classical Hodgkin lymphoma (Gray-zone lymphoma):

- R-CHOP x 6 cycles for most patients
- RCHOP followed by ASCT if high risk factors are present (IPI=4-5 especially with interim PET+ disease)
Primary Mediastinal B-Cell Lymphoma

Primary mediastinal B-cell lymphoma (PMBCL) of thymic origin represents 6-10% of all DLBCLs, and most commonly affects young adults (median age ~35), women more than men. It is frequently associated with a bulky mediastinal mass that directly extends into extranodal thoracic tissues such as pleura, pericardium and chest wall. Patients with distant lymphadenopathy or extranodal involvement outside the thorax should likely be diagnosed and treated as systemic DLBCL with secondary mediastinal involvement, rather than as PMBCL. Overall, PMBCL is associated with a better prognosis than other DLBCLs, including GCB DLBCLs. The IPI score tends not to work well for PMBCL because most patients are young with fairly well-preserved performance status, and have elevated LDH. Therefore, limited vs advanced stage, and number extranodal sites (esp pleural effusions) tend to be the only factors that subdivide patients into excellent vs good prognosis. Likewise, because most patients have a very good prognosis, interim restaging PET imaging is associated with very high negative predictive value, but relatively low positive predictive value. These findings were confirmed in 20 patients treated with R-CHOP in Alberta, where the PPV of a positive interim PET scan was only 20% for disease progression/relapse whereas a negative interim PET had NPV 100%. Therefore, a positive interim PET scan should probably not be used alone to guide further therapy.

Treatment of PMBCL with RCHOP +/- RT is associated with cure rates of approximately 75-80% and overall survival rates of 90%. Phase II studies have reported that intensifying chemotherapy (eg. dose adjusted EPOCH-R) maintains excellent outcomes while avoiding RT. However, the prospective phase III CALGB/Alliance 50303 study randomized 464 DLBCL patients (including 35 with PMBCL) to RCHOP or DA-EPOCH-R, and found no difference in PFS or OS between regimens, although there was substantially more toxicity with DA-EPOCH-R. A large retrospective study from 11 centres compared outcomes of 132 PMBCL patients treated with R-CHOP (n=56) or with dose-adjusted R-EPOCH (n=76), and found similar survival rates of approximately 90% with both regimens, but with more RT use in the R-CHOP group (59% vs 13%). There is no phase III evidence that RT after R-CHOP improves survival rates relative to R-CHOP alone, but this is being studied in the ongoing IELSG-37 clinical trial. Real-world data from the BCCA demonstrates that omitting RT for PET-negative patients at the end of R-CHOP therapy achieves similar TTP (80%) and OS (89%) as historical cohorts treated routinely with RT, with a reduction in RT use from 78% in the historical cohort to 28% in the PET-directed era. Similarly, retrospective data for 91 consecutive patients in Alberta treated with R-CHOP from 2004-2020 found a 5-year overall survival rate of 86%, with similar outcomes for patients with advanced versus limited stage (86% vs 92%, p=0.31) or bulky versus non-bulky disease (83% vs 96%, p=0.12). For patients responding to R-CHOP, the 5-year OS rate was 93% with RT versus 100% without RT (p=0.17). Among 40 patients with a PET-defined complete metabolic response after R-CHOP, 5-year OS was 100% for all patients treated with (n=9) or without (n=31) RT.

Management of patients with partial metabolic response after R-CHOP is uncertain. Prospective data show that the majority of Deauville 4 end-of-treatment (EOT) PET scans after DA-
EPOCH-R are false-positives which can be monitored with surveillance PET without RT, with progressive disease occurring in only 1/16 patients with Deauville. Among the 34 patients in BC and Alberta with Deauville 4 EOT PET after R-CHOP (the majority of whom received RT), survival outcomes were excellent and similar to EOT PET-negative patients. It is likely that many cases of partial metabolic response after R-CHOP are false positives as well; indeed, 5 patients in Alberta and BC with Deauville 4 after R-CHOP were observed without RT and none relapsed. Extrapolating from this data, it has been proposed that surveillance imaging without radiation may be reasonable for young patients with Deauville 4 EOT PET after R-CHOP given the likely low risk of progression and long-term risks of toxicity from RT.

In conclusion, available evidence supports the use of R-CHOP for patients with PMBCL, with less toxicity but similar excellent outcomes as DA-EPOCH-R. End of treatment PET should be done 6-8 weeks after day 1 of the final cycle of chemoimmunotherapy to allow time for the post-treatment inflammatory response to resolve. In view of the long-term risk of secondary malignancy and premature heart disease from RT in young patients, RT can probably be safely omitted for patients with PET-negative disease after R-CHOP. Omitting RT in favour of surveillance imaging in 6-8 weeks (CT is the preferred modality in Alberta) may be reasonable for patients <60 years old with Deauville 4 on EOT PET after R-CHOP, while older patients and those with Deauville 5 should receive RT. For the 10-20% of patients with suspected relapsed/refractory PMBCL, the diagnosis of progressive disease should be confirmed with biopsy or clear progression on CT, and not based on FDG uptake on PET alone. Treatment options at relapse include radiation for localized disease, salvage chemotherapy and autotransplant, radiation therapy, axicabtagene ciloleucel (funded only after 2 prior lines of therapy), and pembrolizumab.

Follicular Lymphoma

Throughout the following suggested treatment approach, three over-riding principles should be considered:

1. These are guidelines only. This disease often carries a long, incurable, remitting/relapsing natural history and, therefore, several treatment approaches are reasonable.
2. The mere presence of disease does not alone imply the need for treatment.
3. If therapy is required for predominantly localized disease, IFRT should be considered in lieu of systemic pharmacological treatment as long as the radiotherapy can be done with minimal early or delayed side-effects (e.g., xerostomia, severe nausea/vomiting) and without eliminating future treatment options (e.g., should not radiate ≥25% bone marrow). Figure 2 outlines the treatment algorithm for follicular lymphoma.
Figure 2. Treatment algorithm for follicular lymphoma.

| Stage IA or contiguous stage IIA | Advanced stage disease
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IFRT 24Gy/12 – 30Gy/20 or</td>
<td>(Stage III/IV, B symptoms, or bulky mass > 10cm)</td>
</tr>
<tr>
<td>Consider observation if disease in</td>
<td></td>
</tr>
<tr>
<td>Chest, abdo, or pelvis</td>
<td></td>
</tr>
</tbody>
</table>

Indications for Systemic Therapy (any 1 of the following):
- Patient symptoms (e.g., fever, night sweats, weight loss, malaise, pain, nausea)
- Significant lymphadenopathy: > 7 cm mass, ≥ 3 sites and ≥ 3 cm, rapidly progressive
- Splenomegaly > 6 cm below costal margin or hypersplenism or pain
- Impending organ compromise (compression, pleural/pericardial effusions, ascites)
- Cytopenias secondary to bone marrow infiltration
- Progressive disease after ≥ 1 year follow-up (clinically or on CT).
- Patient preference because of anxiety and poor quality of life without treatment

No

Observe (or arrange follow-up)

clinical assessments q3-6 months and CT at 1 year after diagnosis ("watchful waiting")

Yes

Grade 1,2,3a

B-R x 6

then if PR/CR

rituximab q3 months x 2 years

Grade 3b

R-CHOP x 6

Serious co-morbidity limited life expectancy

chlorambucil p.o. or

fludarabine p.o.

Initial therapy of stage IA and contiguous stage IIA:
IFRT 24Gy/12-30Gy/20 fractions is recommended for newly diagnosed patients with peripheral stage IA or contiguous non-bulky stage IIA follicular lymphoma, even if the patient is asymptomatic.

Initial therapy of advanced stage disease (stage III/IV, B symptoms, or bulky stage I/II):
Indications for systemic therapy (usually stage III/IV or bulky stage I/II) include any one of the following:
- Patient symptoms (fever, night sweats, weight loss, malaise, pain, nausea)
- Significant lymphadenopathy (> 7 cm mass, ≥ 3 sites and ≥ 3 cm, rapidly progressive)
- Splenomegaly ≥ 6 cm below costal margin, or hypersplenism, or pain
- Impending organ compromise (compression, pleural/pericardial effusions, ascites)
- Cytopenias secondary to bone marrow infiltration
- Progressive disease after ≥ 1 year follow-up, clinically or by CT imaging
- Patient preference because of anxiety and poor quality of life without treatment

For patients who do not have any of the above indications for therapy, the recommended approach is to observe with (or arrange) follow-up clinical assessments every 3-6 months ("watchful waiting"), and a CT CAP 1 year after diagnosis. For patients not meeting treatment criteria 1 year after diagnosis, another CT 2 years after diagnosis could be considered. Patients who have progressive disease on
follow-up should generally be treated, even if they do not fulfill any of the other indications for therapy. A retrospective study of 238 Alberta follicular lymphoma patients managed with watchful waiting found that 24% developed transformed disease or significant organ dysfunction (at a median of 30 months) prior to initiating initial therapy, and these patients had inferior survival rates compared to other patients requiring therapy who were initially managed with watchful waiting (10 yr OS 67.9% vs 85.7%, HR 3.000 (95%CI 1.696-7.126), p=0.0007). These watchful waiting patients did not undergo routine follow-up CT scans at 1 or 2 years to identify progression. It is possible that these adverse outcomes might have been avoided with closer monitoring by CT imaging and earlier initiation of chemoimmunotherapy.

Although not the preferred approach in Alberta, for select patients with advanced stage, asymptomatic FL with compelling reasons for treatment, rituximab monotherapy (weekly x 4) can be considered based on the long term follow up of the Ardesha/Northend trial. This phase III trial randomized 379 patients with asymptomatic low tumour burden follicular lymphoma to (1) W&W (2) rituximab induction (RI) or (3) RI followed by rituximab maintenance (RM). The median time to next treatment (TTNT) was Median TTNT was 2.7 years (W&W), 9.9 years (RI) and not reached (RM). No significant differences in OS, histological transformation, or response to next line treatment were observed.

For grades 1,2,3a follicular lymphoma who have an indication for therapy, the recommended therapy involves 6 cycles of B-R (bendamustine-rituximab) chemotherapy, followed in responding patients by 2 years of maintenance rituximab (every 3 months for total of eight doses). In patients with previously untreated indolent lymphoma, B-R can be considered as a preferred first-line treatment approach to R-CHOP because of increased progression-free survival and fewer side-effects. Patients who have limited life-expectancy from serious co-morbid illness, or who do not want intravenous therapy, may be treated with oral chlorambucil or fludarabine monotherapy.

The GALLIUM clinical trial investigated the value of obinutuzumab in combination with chemotherapy followed by maintenance therapy compared to standard therapy with rituximab chemo-immunotherapy plus maintenance in the first-line treatment of follicular lymphoma. The study demonstrated superiority of obinutuzumab over rituximab in terms of PFS (3-year PFS was 81.9% (95%CI: 77.9-85.2%) vs. 77.9% (95%CI: 73.8-81.4%), with acceptable increased toxicity. As no OS advantage has yet been demonstrated, obinutuzumab is not funded in Canada for this indication and we continue to recommend rituximab.

Grade 3b follicular lymphoma should be treated as DLBCL with R-CHOP. Rituximab maintenance has not been proven effective following R-CHOP therapy for large B-cell lymphoma, and therefore is not recommended.

Therapy of relapsed disease: Therapeutic recommendations for recurrent follicular lymphoma need to be individualized, and no one recommendation is suitable for all patients. Numerous factors need to be taken into consideration before recommending therapy for recurrent follicular lymphoma, including:
• Patient Factors: Age, co-morbidity, symptoms, short vs. long-term goals, preservation of future options, reimbursement/ability to pay for expensive treatments, acceptance of risks/toxicities of treatment option relative to potential benefit (RR, PFS, OS).
• Disease Factors: Stage, sites of involvement, grade, transformation, prior therapy, time from prior therapy (disease-free interval).

For example, previously healthy patients younger than 70 years who relapse within 2 years of initial chemotherapy have a median life expectancy of <5 years, and are best managed with HDCT/autologous SCT. HDCT/SCT maximizes the length of disease control for all patients less than 70 years, regardless of length of initial remission, and as such is a reasonable treatment option for those who accept potential risks/toxicities. Therefore, patients younger than 70 years without serious co-morbid disease, and who respond to salvage therapy should be considered for high dose chemotherapy and autologous (relapse 1-2). A large retrospective study of consecutively treated relapsed follicular lymphoma patients in Alberta and BC reported 5 year overall survival rates following relapse of ~90% for those who received ASCT vs ~60% for those who did not receive ASCT. This marked difference in survival retained significance in multivariate as well as instrumental variable analyses145.

For patients not suitable HDCT/SCT, lenalidomide and rituximab, based on the AUGMENT trial is approved for patients with relapsed/refractory disease. Progression-free survival was estimated at a median duration of 39.4 months (95% CI, 22.9 months to not reached) in this phase III trial146.

Some patients may be managed with repeating chemo-immunotherapy if they have achieved a long remission to first therapy. Standard-dose chemotherapy regimens (bendamustine, chlorambucil, CVP, fludarabine, etoposide, CEPP, GDP, FND, PEC, or MEP) can be considered secondline. For patients who have rituximab, it is reasonable to re-treat with rituximab alone or with chemotherapy as long as the patient attained at least a 6 month remission to prior rituximab-based therapy. Rituximab maintenance should only be used once in the course of a patient’s disease (first remission or first relapse).

A phase 3, open-label, two-arm parallel, randomized trial (GADOLIN), compared obinutuzumab and bendamustine followed by obinutuzumab maintenance to bendamustine alone in patients with rituximab-refractory, indolent non-Hodgkin lymphoma (failure to respond or progress during or within 6 months of a rituximab containing regimen). Both PFS (HR[95%CI]: 0.52[0.39,0.69]; p<0.0001) and OS (HR[95%CI: 0.58[0.39,0.86]; p=0.0061) were improved in the FL group treated with obinutuzumab. While there was no significant advantage reported for patients with other subtypes of iNHL, this was deemed to be based purely on the small numbers in other subgroups. Based on these results, it is recommended that obinutuzumab chemo-immunotherapy be considered in patients with rituximab-refractory iNHL. While the study used bendamustine as a chemotherapy backbone, few patients on the study had received bendamustine as their frontline therapy. Given current practice of BR for the frontline treatment of FL and the fact that there is no biological reason that the same clinical benefit of obinutuzumab would not be seen in combination with other chemotherapies,
alternate NHL chemotherapy backbones can be considered for patients deemed inappropriate for bendamustine retreatment. Relatively frequent infections were noted so prophylactic antibiotics and antivirals should be considered, especially when obinutuzumab is combined with bendamustine.

Another option to consider for rituximab-refractory relapsed FL is radioimmunootherapy with 90Y-ibritumomab tiuxetan (Zevalin). This option requires Director’s Privilege approval, and is not currently listed on the Alberta Cancer Drug Benefit List for funding. In a small study of 57 patients with rituximab-refractory FL (median 4 prior therapies), the overall response rate to 90Y-ibritumomab tiuxetan was 74% (CR 15%) and median duration of response of 8.7 months. There may be small subset of patients (10-15%) who achieve long-term PFS following 90Y-ibritumomab tiuxetan.122,147

Idelalisib, a PI3Kδ inhibitor has also shown efficacy in a Phase 2 study of double-refractory FL patients (patients with lack of response or progression within 6 months of both rituximab and an alkylator). Idelalisib can lead to durable remissions in a minority of patients and is currently not funded in Canada but is available through a compassionate access program. Infectious complications and immune toxicities are frequent and prophylactic antibiotics and anti-virals are required to reduce the risk of serious infections.148

Palliative, symptomatic care (possibly including palliative IFRT 4Gy/2 fractions) is usually the best option for patients who were refractory to their 2 most recent treatment regimens, those with CNS involvement, or those with an ECOG score of 3-4.

\textbf{Indolent Lymphomas (Excluding Follicular Histology)}1,149-157

Indolent lymphomas should generally be treated similarly to follicular grade 1-2 lymphomas.

\textbf{Table 2. Treatment of Indolent Lymphomas}149

<table>
<thead>
<tr>
<th>Stage</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited</td>
<td>IFRT (24Gy/12 - 30Gy/20)</td>
</tr>
</tbody>
</table>
| Advanced | Asymptomatic: observation until treatment indication
| | Symptomatic:
| | • majority should receive B-R, then rituximab maintenance
| | • alternatives in special situations include IFRT, fludarabine, or chlorambucil |

\textbf{Splenic Marginal Zone Lymphoma}

Splenic marginal zone lymphoma is an uncommon type of non-Hodgkin lymphoma characterized by splenomegaly, cytopenias, lymphocytosis, and less commonly lymphadenopathy. Revised diagnostic criteria now specify the typical blood and bone marrow findings of SMZL and splenic biopsy is not usually required to establish the diagnosis.158 It is still reasonable, however, to proceed with splenectomy if the cause of splenomegaly is not determined following peripheral blood and bone marrow evaluation.
The disease course is indolent and many patients can be managed expectantly until symptomatic splenomegaly or pronounced cytopenias develop. SMZL prognostic scoring systems have been described, with low hemoglobin, low platelets, elevated lactate dehydrogenase and extra-hilar lymphadenopathy as adverse markers159.

In rare cases, SMZL has been associated with hepatitis C infection (HCV), so all patients should be screened at diagnosis. Those who are HCV+ should first be offered HCV-directed therapy, as the lymphoma may regress avoiding the immediate need for further therapy160, 161. Splenectomy has previously been the standard approach to treat SMZL for over two decades162. The role of splenectomy as frontline treatment of SMZL is now controversial163, 164, 165, 166. Risks posed by splenectomy include operative morbidity and mortality, particularly in the elderly, or those with multiple comorbidities. However, surgical outcomes are improving at experienced centres. The risk of infection with encapsulated organisms is a serious concern, but may be mitigated with timely vaccination and long-term antibiotic prophylaxis167.

Monotherapy with rituximab has recently emerged as a non-operative alternative164-168 with reports suggesting survival outcomes similar to historical patients treated with splenectomy. Chemo-immunotherapy such as rituximab-bendamustine (BR) is also a rational approach for SMZL given the recent favourable results of a large scale RCT of iNHL, including marginal zone histology140.

Although existing evidence is inadequate to conclude which treatment approach is superior, we propose the following strategy for managing SMZL:

1. Rituximab monotherapy is recommended as frontline therapy for most patients. A standard regimen is rituximab weekly for 4 weeks, followed by a response assessment 4-6 weeks later.
 a. Those achieving at least a partial response, defined by conventional response criteria158, should subsequently receive maintenance rituximab as per other iNHL subtypes.
 b. Non-responders or those with progressive disease should proceed with either:
 i. Splenectomy if the spleen is the major site of disease or
 ii. BR for those with additional nodal disease, extensive bone marrow involvement, or non-operative candidates, then followed by maintenance rituximab in responding patients.

2. Select patients who require a splenectomy to establish the diagnosis and have no bone marrow, peripheral blood, or nodal involvement, do not require maintenance rituximab and may simply be observed.

Small Lymphocytic Lymphoma (SLL)

SLL and chronic lymphocytic leukemia (CLL) are considered to be biologically the same disease and the management of SLL should follow CLL treatment guidelines (not guidelines for other indolent non-Hodgkin lymphoma subtypes. [CLL Guideline link])
Lymphoplasmacytic Lymphoma (LPL)

Diagnostic criteria for Waldenström macroglobulinemia (WM):
- IgM monoclonal gammopathy of any concentration
- Bone marrow infiltration by small lymphocytes showing plasmacytoid/plasma cell differentiation, usually with intertrabecular pattern of bone marrow infiltration
- LPL immunophenotype:
 - surface IgM+ CD5- CD10- CD19+ CD20+ CD22+ CD23- CD25+ CD27+ FMC7+ CD103- CD138-
- Recent findings documented a strong association between WM and the MYD88 L265P variant, which might serve as an additional tool to diagnose WM and to separate it from other entities such as multiple myeloma, monoclonal gammopathy of undetermined significance, splenic marginal zone lymphoma and MALT lymphoma

Diagnostic approach to confirm a suspected case of WM:
1. Serum protein electrophoresis with immunofixation: to characterize the type of light and heavy chains.
2. 24-Hour urine for protein electrophoresis: 40%-80% have detectable Bence Jones proteinuria.
4. Bone marrow biopsy: intratrabecular monoclonal lymphoplasmacytic infiltrate, ranging from predominantly lymphocytic to lymphoplasmacytic to overt plasma cells.
5. CT of the abdomen and pelvis: to detect organomegaly and lymphadenopathy (skeletal surveys and bone scans are not necessary in absence of symptoms).
6. Blood or plasma viscosity: if signs and symptoms of hyperviscosity syndrome (HVS) or IgM> 50 g/L.
7. Direct antiglobulin test and cold agglutinin titre if positive.
8. Cryoglobulins.

IgM monoclonal protein response assessment in WM157.
Serum IgM monoclonal protein should be measured by serum protein electrophoresis. The use of nephelometry to determine total serum IgM should be discouraged because this method is unreliable, especially when the levels of monoclonal protein are high. The presence of cryoglogulin or cold agglutinin may affect determination of IgM; therefore, testing of cryoglobulin and cold agglutinin at baseline should be considered, and if present, serum samples should be reevaluated at 37°C to ensure accurate and consistent determination of the monoclonal protein levels.

Hyperviscosity syndrome (HVS) in LPL
Symptoms and signs of hyperviscosity include spontaneous bleeding, neurological symptoms and retinopathy. Patients with HVS have an expanded plasma volume and cardiac failure may also occur. There are several published reports demonstrating the efficacy of plasmapheresis in HVS although randomised data are lacking. There is not, however, a simple linear relationship between paraprotein
concentration and either plasma viscosity, whole blood viscosity or symptoms. An increase in IgM concentration from 20 to 30 g/L results in an increase in plasma viscosity of <2 centipoise (cP) but an increase from 40 to 50 g/L increases the plasma viscosity by around 5 cP. Indeed, a 1-volume plasma exchange results in a 35-40% decrease in IgM concentration but in up to a 60% reduction in plasma viscosity. In patients with WM the actual plasma volume may exceed that calculated and, given the data above, a 1–1.5 volume exchange is therefore advisable.

General treatment guidelines for LPL/WM

The usual indications for starting patients with LPL/WM on active therapy consist of clinical evidence of adverse effects of the paraprotein (HVS with neurological or ocular disturbance, peripheral neuropathy, amyloidosis, symptomatic cryoglobulinemia), symptomatic anemia (Hb<100g/L beware of pseudo-anemia from hemodilution), platelets <100, progression to high-grade lymphoma, significant adenopathy or organomegaly, or constitutional symptoms.

- **Plasmapheresis**: 1-2 procedures, exchanging 1-1.5 calculated plasma volumes, are advised for the treatment of HVS in WM, followed by chemotherapy to prevent paraprotein re-accumulation. In patients who are drug-resistant, plasmapheresis may be indicated for long-term management. Although there are few studies that consider the role of plasma exchange in the treatment of cryoglobulinemia, there is a clear rationale for its use. The treatment room should be warm and blood warmers used in the cell separator circuit to prevent precipitation during the procedure.

- **Chemotherapy**: The most common initial chemotherapy for LPL is B-R (Bendamustine-Rituximab) followed by rituximab maintenance, similar to other indolent B-cell lymphomas. For patients who do not tolerate B-R, CDR (Cyclophosphamide, Decadron, Rituximab) or Bortezomib-based therapy (eg. R-Bortezomib, R-CyBorD) could be considered. Rituximab is active in the treatment of WM but associated with the risk of transient exacerbation of disease-related complications and should be used with caution in patients with symptoms of hyperviscosity and/or IgM levels >40 g/L. In patients with hyperviscosity and/or IgM levels >40 g/L, it is advised to hold rituximab for cycle 1, and start rituximab with cycle 2 chemotherapy. In retrospective studies, purine analogue therapy is associated with higher rates of prolonged cytopenias, infections, secondary MDS/AML, and transformation to large cell lymphoma when compared to therapy with alkylating agents.

- **BTK inhibitors**, ibrutinib and zanubrutinib are both highly effective in in LPL (both first line and for relapsed/refractory disease). Zanubrutinib is now funded for relapsed LPL in AB and is the preferred second line therapy for most patients.

- **Patients who have obtained lengthy first remissions can be considered for re-treatment with chemo-immunotherapy with or without the addition of bortezomib (eg. R-Bortezomib, R-CyBorD)**

Hairy Cell Leukemia

Hairy cell leukemia (HCL) and HCL variant (HCL-V) are mature lymphoid B-cell disorders, characterized by the identification of hairy cells and a specific genetic profile. Diagnosis of HCL is based on morphological evidence of hairy cells, immunophenotypic positivity for CD11C, CD103, CD123, and CD25 expression and the presence of *BRAF* V600E somatic mutation. *BRAF*-V600E has
not been identified in other B-cell chronic lymphoproliferative disorders except very rarely so the mutation is now considered as the molecular hallmark of the disease. Absence of the BRAF gene mutation is reported in approximately 10% of patients with HCL and appears to constitute a subgroup with a poor prognosis.472.

Patients with asymptomatic HCL may be managed with active observation (watch & wait strategy). Symptomatic patients should be treated with symptoms commonly derived from cytopenias or splenomegaly. Most guidelines agree that even asymptomatic patients with marked cytopenias should be treated including at least one of the following: hemoglobin < 110 mg/dL, platelet count <100,000/µL, or an absolute neutrophil count <1000/µL.

In the first-line setting, purine analogs (cladribine or pentostatin) have been demonstrated to result in long overall survival. No randomized trials have been performed in HCL with no studies to suggest superiority of either drug but cladribine is available in Canada and is the most frequently used drug worldwide for HCL. Early studies used continuous intravenous dosing over 7 days but more recent studies (non-comparative) have investigated subcutaneous dosing over 5 days and demonstrate excellent responses. The recommended dose of cladribine is 0.1-0.14mg/kg daily for 5-7 days. We recommend sc dosing for convenience and reduced infusion times. Infection prophylaxis is recommended as with other purine analogues (PJP and viral prophylaxis for 6-12 months) and patients with active infections should have control of infection prior to therapy initiation if possible.

For relapsed HCL, cladribine can result in a second durable remission however, synergy has been demonstrated with rituximab such that we recommend combination therapy with rituximab and cladribine for relapsed disease. Studies of rituximab have used a weekly schedule x 8 weeks, concurrent with cladribine. Careful attention for and prophylaxis against infection is recommended.

A recent study investigated the addition of rituximab to cladribine in the frontline setting. HCL patients treated with concurrent cladribine and 8 weekly doses of rituximab had higher MRD-free complete remission rates than patients treated without rituximab or with delayed rituximab. (JCO 2020; 38:1527) As improved responses are predicted to lead to longer remissions and given the proven benefit of rituximab in combination with chemotherapy frontline for other indolent NHLs, we recommend consideration of cladribine + rituximab for frontline HCL treatment. Infectious risks and lack of survival data should be considered with cladribine monotherapy favoured for frailer patients and those at high risk of infection. Unpublished Alberta data suggests that patients with HCL have a higher incidence of injection site reactions to subcutaneous rituximab compared to other patients with NHL.

Given the importance of BRAF V600E in this disease, BRAF inhibitors have been investigated in relapsed patients with high response rates. Low dose vemurafenib at 240mg twice daily was reported to result in complete remissions in 40% of patients. Unfortunately, results do not appear durable after drug discontinuation and retreatment or chronic treatment may be required. We recommend BRAF inhibition for patients who are refractory to cladribine (relapse < 24 months) or relapse after cladribine + rituximab. Vemurafenib has also been used successfully in previously
untreated patients with active infections as a bridge to cladribine therapy during treatment of the infection.

Moxetumomab pasudotox is a recombinant CD22-targeting immunotoxin, which has also proven efficacy in highly refractory HCL patients. This agent is associated with severe adverse reactions including hemolytic-uremic syndrome (7.5%) and capillary leak syndrome (5%). (leukemia 2018; 32: 1768) Moxetumumab is not currently funded in Canada but could be considered in relapsed HCL patients who have exhausted all other therapeutic options.

Special Lymphomas

Mantle cell lymphoma

Characteristics of mantle cell lymphoma include: male predominance, median age approximately 65 years, advanced stage with multiple extranodal sites (marrow, blood, and intestinal tract), relative chemoresistance, no evidence for curability following R-CHOP chemotherapy, median time to relapse after initial chemotherapy of 12-18 months and median survival following RCHOP induction of 3-5 years. Significant improvements in PFS over RCHOP alone have been demonstrated with the addition of high dose cytarabine to RCHOP-like regimen induction followed by high dose therapy and ASCT for transplant eligible patients, with incorporation of BTK inhibitors into first-line therapy (not yet approved or funded), and for B-R induction for transplant ineligible patients, as well as for prolonged rituximab maintenance after completing initial chemotherapy.

Recommendation regarding Watchful Waiting for MCL

Although most patients with MCL have relatively aggressive disease, and even those asymptomatic patients initially managed with watchful waiting have median times to first systemic therapy of 11-12 months, a small proportion of patients can be managed expectantly for over 5 years. Features suggestive of indolent MCL include leukemic non-nodal presentations, predominantly hypermutated immunoglobulin heavy chain variable regions, non complex karyotypes and absence of SOX11 expression by immunohistochemistry. Occasionally, nodal MCL can also follow an indolent course. Prognostic indices such as the MIPI have not been shown to identify indolent MCL. Poor prognostic features associated with shorter survivals and response durations, for which expectant management is not appropriate, include high burden nodal disease, Ki-67 positivity >20-30%, blastoid histology, p53 or Notch1 mutation, gene expression profiling and altered microRNA signature. No prospective randomized trials, or properly designed retrospective comparative effectiveness research studies have compared immediate treatment versus watch-and-wait for MCL patients without clear indications for therapy. Poorly designed retrospective studies suggest similar survival outcomes to immediate therapy, however these studies were biased because patients were selected for watchful waiting based upon better prognostic factors (eg. younger age, better performance status) and did not routinely administer immediate aggressive therapy according to current standards to all patients in the control groups. Prospective randomized trials have demonstrated that more aggressive therapy improves PFS and OS rates relative to less aggressive
therapy for MCL. Extrapolating these data to the hypothetical question of aggressive therapy vs no immediate therapy leads to the logical conclusion that immediate therapy is likely the superior approach for most MCL patients.

Given the lack of high quality evidence from properly conducted comparative studies to prove the W&W is non-inferior to immediate therapy, W&W should only be considered for patients who present with all of the following features:

1) Non-nodal disease such as CLL-like presentation (lymphocytosis without associated cytopenias) or stage IAE marginal zone-like presentation. Patients presenting with nodal disease should generally receive immediate chemo-immunotherapy as indicated in treatment sections below unless they have significant co-morbidity that will limit life-expectancy, low tumor burden, and meet other criteria listed in this section below.

2) No disease-related symptoms

3) No adverse pathology features such as blastoid variant, Ki67>20% of cells, or complex cytogenetic changes. Other adverse features include SOX11 expression and complex cytogenetic changes, however, SOX11 immunohistochemistry is not routinely available in Alberta.

4) Patient consent to forgo immediate therapy despite knowledge of demonstrated survival benefits of aggressive vs less aggressive therapy. Patient agreement to surveillance disease monitoring.

Treatment – Transplant Eligible Patients (Up to approximately age 65 years)

The accepted standard of care for newly diagnosed MCL patients up to approximately 65 years of age without major co-morbidities has involved chemoimmunotherapy followed by high dose therapy with ASCT and then 3 years of rituximab maintenance administered every 2 months. Progression free and overall survival benefit has been established in a prospective randomized trial for patients treated with myeloablative radiochemotherapy followed by autologous stem cell transplant in first remission as consolidation after CHOP-like chemotherapy190, 191, 198. The addition of high dose cytarabine to RCHOP-like regimens is also associated with improved rates of CR, PFS, and OS relative to RCHOP alone. This is supported by studies from the GELA and the European MCL Network with R-CHOP/R-DHAP induction prior to ASCT (RCHOP-21 x 3 followed by R-DHAP x3 , or alternating RCHOP/RDHAP x 6 cycles)192, as well as the Nordic regimen published as a phase II trial involving RCHOP-21 alternating with Ara-C [3gm² for patients under age 60 years or 2g/m² for patients over 60 years, repeated every 12 hours for a total of 4 doses], for a total of 6 cycles, then ASCT199. Long-term follow-up of the European MCL Younger Trial demonstrated 10-year TTF 46% with R-CHOP/R-DHAP/ASCT, with a plateau on the curve demonstrating that a significant proportion of patients achieve durable remissions lasting >10 years200. Given the superiority of BR over RCHOP in terms of efficacy and tolerability in patients with MCL, a phase 2 study of BR and RC induction for transplant-eligible patients was conducted and demonstrated a favorable safety profile as well as efficacy (with CR 96% and 93% MRD negativity after ASCT)201. A pooled analysis of 89 patients who received BR/RC induction chemotherapy prior to ASCT demonstrated a high transplant rate (89%), and durable remissions (5-yr PFS 80% and OS 85%) thus confirming that BR/RC is an excellent choice
for induction therapy in MCL202. Among 34 patients in Alberta treated with BR/RC induction, ASCT, and maintenance rituximab between 2018-2021, 79% of patients proceeded to ASCT, 3-year PFS was 77%, and 3-year OS was 83%. There were no relapses after ASCT with median 3 years of follow-up. The role for ASCT in MCL has recently been challenged by the European MCL Network TRIANGLE trial, which reported superior 3-year FFS with the addition of ibrutinib to R-CHOP/R-DHAP induction with or without ASCT followed by ibrutinib maintenance compared to R-CHOP/R-DHAP/ASCT alone203. Although a formal comparison between the ASCT+ibrutinib versus ibrutinib-only arms is not yet available, the early FFS and OS curves of these arms appear similar. Although the preliminary results appear promising, this trial should not yet change practice in Alberta until longer follow-up is available along with the results of the ongoing E4151 trial.

\textit{TP53} mutation is an uncommon (11%) but significant poor prognostic finding in patients with MCL, highly associated with blastoid morphology, Ki-67 >30%, and high risk MIPI204. All patients who are potentially eligible for stem cell transplant or CAR-T cell therapy should undergo TP53 mutation testing. Of note, TP53 mutations should be assessed by next-generation sequencing (NGS), since the prognostic value of FISH or immunohistochemistry staining has not been as well established205. Unfortunately, intensified standard-of-care regimens for younger patients with MCL do not overcome the deleterious effects of \textit{TP53} mutations, with a median OS of 1.8 years, compared to 12.7 years for \textit{TP53}-unmutated204. Response to ibrutinib is also less favorable in patients with mutated versus wild-type \textit{TP53}, with median PFS of only 4 months206. CAR-T cell therapy has shown high response rates in TP53-mutated MCL although longer follow-up is needed to confirm durability of responses207, 208. Of note, bendamustine exposure within 6 months before leukapheresis has been associated with impaired CAR-T cell manufacturing and reduced efficacy, hence the use of bendamustine should be avoided in patients with TP53 mutations who are likely to require early access to CAR-T cell therapy207, 208. The optimal approach to patients with TP53 mutations is unknown, but immune and cellular therapies are the most promising strategies. Given the high early relapse rates despite intensive chemotherapy and ASCT204, ASCT should not be routinely recommended for TP53-mutated MCL now that more promising cellular therapies are available. The option of an allogeneic SCT in first response may be discussed with younger, fit patients, although this is associated with significant toxicity and there is limited evidence to support the efficacy of allogeneic SCT in TP53-mutated MCL209. Given the reduced risks of GVHD and non-relapse mortality, CAR-T cell therapy at second disease progression is our generally preferred strategy for most patients with TP53-mutated MCL. Close monitoring while on a BTK inhibitor is essential to detect relapse early and quickly refer for CAR-T before loss of disease control210.

Although maintenance rituximab has been shown to improve PFS and OS (4 year OS 87% vs. 63%) in the elderly population (age > 60) after induction with R-CHOP211, the role of rituximab maintenance after ASCT for younger patients was uncertain until results of the phase III trial (LyMa) were reported189. In the LyMa trial, 299 patients <66 years of age with mantle cell lymphoma received 4 courses of R-DHAP followed by R-BEAM/ASCT (patients who did not achieve at least PR after R-DHAP could receive 4 additional courses of R-CHOP to facilitate ASCT) and 240 responders were then randomly assigned to receive 3 years of rituximab maintenance therapy (375 mg/m2, one injection every two months) or watch and wait. The median follow-up from randomization after transplantation was 50.2 months (range, 46.4 to 54.2). Progression-free survival at 4 years was improved at 83% (95% CI, 73 to 88) in the rituximab group versus 64% (95% CI, 55 to 73) in the
observation group (P<0.001) and overall survival was improved at 89% (95% CI, 81 to 94) in the rituximab group versus 80% (95% CI, 72 to 88) in the observation group (P=0.04). In support of the LyMa trial, a retrospective review of 72 patients previously enrolled in a phase II trial showed a progression free survival benefit in patients who received maintenance Rituximab vs those who did not (2 year PFS 90% vs. 65%) \cite{212}.

Treatment – Transplant Ineligible Patients (Age over approximately 65yrs)

For patients with mantle cell lymphoma over approximately 65 years of age, B-R induction x6 cycles is our standard of care. Results from an open-label, multicentre, randomized, phase 3 non-inferiority trial found a significant benefit for progression-free survival in patients with mantle cell lymphoma treated with B-R versus R-CHOP (HR 0.61, 95%CI 0.42-0.87, p=0.0072)\cite{140}. In addition, the trial confirmed the improved toxicity profile of BR over RCHOP. The phase III SHINE trial demonstrated that the addition of continuous ibrutinib to BR improved PFS over BR alone in older patients with MCL, although the ibrutinib arm had increased toxicity and treatment-related mortality with no improvement in overall survival\cite{213}. As such, first-line BTK inhibitors are not currently approved or recommended for transplant ineligible patients with MCL.

Regarding rituximab maintenance, there is no published trial examining its benefit following BR induction. The European Mantle Cell Lymphoma Elderly trial confirmed a benefit of rituximab q2 months until progression (vs. interferon-α 2a or 2b) following RCHOP induction. After a median follow-up of 30 months, rituximab maintenance was associated with a significantly longer remission duration compared to interferon maintenance (51 vs. 24 months; HR=0.56, 95% CI 0.36-0.88; p=0.0117). While there was no difference in overall survival between the two groups, a subcohort of patients treated with R-CHOP appeared to show an advantage in 3-year overall survival with rituximab versus interferon maintenance (85% vs. 70%, p=0.0375). The StiL group investigated the value of R maintenance following BR and reported a lack of benefit in terms of PFS or OS.\cite{214} However, the study was underpowered to detect a difference. Further, a multicentre retrospective study reported superior outcomes of patients given R maintenance (vs. observation) after achieving CR or PR with BR, with an OS advantage for those who achieved PR only.\cite{215} We favour following BR x 6 cycles with R maintenance but with a maximum duration of 4 years of rituximab maintenance given the balance between efficacy, toxicity and cost. Given the lack of strong data to support this approach, R maintenance could be omitted or truncated in patients for whom the benefits of extending a remission do not outweigh the inconvenience of maintenance therapy.

The rare patient who has stage I-IIA, non-bulky mantle cell lymphoma could be considered for B-R + IFRT, or even IFRT alone if they are older than 70 years of age or have significant co-morbidities.

Summary Initial Treatment Recommendations for Mantle Cell Lymphoma:

Immediate chemoimmunotherapy is recommended for most patients. See Recommendation regarding Watchful Waiting for MCL for details on the minority of patients for whom watchful waiting is recommended.
Treatment – Transplant Eligible Patients (Age up to approximately 65yrs)

1) Induction: BRx3 cycles, followed by RCx3 cycles
 a. High dose cytarabine dosing
 i. 2 g/m² BID daily x 2 days for age < 60, CrCl > 60 ml/min, and no pre-existing neurotoxicity
 ii. 1.5 g/m² BID for age > 60, or CrCl 46-60 ml/min, or pre-existing neurotoxicity
 iii. 1 g/m² BID for CrCl 31-45 ml/min

2) Autologous blood stem cell collection with high dose cytarabine and G-CSF mobilization

3) Consolidation: High dose therapy and ASCT

4) Maintenance rituximab 375mg/m² IV or 1400mg sc (preferred) every 2 months x 3 years post ASCT

For fit patients with TP53-mutated MCL, discuss allogeneic SCT in first response versus plan for CAR-T cell therapy at second disease progression. CAR-T cell therapy is generally preferred for most patients given the reduced risks of GVHD and non-relapse mortality.

Treatment – Transplant Ineligible Patients (Age over approximately 65yrs).

1) Induction: Bendamustine-Rituximab x 6 cycles

2) Rituximab maintenance q 2 mo until progression or for maximum 4 years

The rare patient with stage I-IIA, non-bulky mantle cell lymphoma could be considered for B-R + IFRT, or even IFRT alone if they are older than 70 years of age or have significant co-morbidities.

Treatment Relapsed Mantle Cell Lymphoma.

There is no standard treatment for relapsed MCL but there are many options, including chemotherapy and novel agents. In general, treatment choice should take into consideration the duration of response to previous treatment.

The Bruton’s tyrosine kinase (BTK) inhibitors have shown the most promise as therapeutic agents for relapsed MCL and are the preferred second line therapy. A phase 3 trial that randomized relapsed or refractory MCL patients who previously received at least one rituximab-containing regimen showed superior PFS using ibrutinib over temsirolimus (mPFS 14.6 vs. 6.2 months, p<0.0001) but no significant advantage in OS. Acalabrutinib has also been investigated in relapsed/refractory MCL in a Phase 2 study with 12 month PFS and OS of 67% and 87% respectively. Similarly, in a phase 1/2 trial with zanubrutinib the median PFS was 21.1 months and median DOR was 18.5 months.

Patients who achieved 12-24 months PFS with previous chemotherapy may do well with a different noncross-resistant chemotherapy regimen (R-bendamustine or R-BAC if previous (R) CHOP, or vice versa). Other treatment options include bortezomib combined with rituximab +/-
chemotherapy222, 223. Maintenance rituximab prolongs PFS and OS in relapsed MCL224 but has not been studied in patients that received it after first-line therapy.

Lenalidomide also has efficacy in this setting, particularly in combination with rituximab +/- chemotherapy223, 225.

Brexxucabtagene autoleucel (brexu-cel) is a CAR T therapy that is Health Canada approved for patients with relapsed or refractory mantle cell lymphoma who have received treatment with a BTKi. In the ZUMA-2 phase 2 trial, the estimated PFS was 61% and OS 83% at 12 months226. This will be an option in the future for patients who are progressing on BTKi who are fit for intensive therapy.

Allogeneic stem cell transplant has the potential to cure MCL, as is evident from a plateau in the survival curves that is often seen post transplant. Because most patients present over the age of 60 and with multiple comorbidities, allogeneic stem cell transplant is not often offered. It may be considered in relapsed disease for those patients who are young and fit, although CAR-T cell therapy is now preferred before allogeneic SCT for most patients with relapsed MCL given the reduced risks of toxicity and non-relapse mortality.

Summary - Approach to Relapsed/Refractory MCL

1. Treatment with BTKi second line is preferable over chemoimmunotherapy
2. For patients not fit for intensive cellular therapy and have failed BTKi, palliative options include bortezomib-based therapies, lenalidomide, and clinical trials
3. For patients fit for intensive cellular therapy (ECOG 0-2 and meeting eligibility criteria) and receiving BTKi
 i. Cases with high-risk features (e.g. \textit{TP53} mutation, blastoid/pleomorphic, Ki67 >30-50%, high MIPI, bulk, POD24) should be started on a BTKi and discussed with the CAR-T centre so that planning and preparation for CAR-T cell therapy can be commended. Patients should be assessed monthly and imaging should be done within 2-3 months or sooner if evidence of poor response. Imaging should be done again by 6 months for patients achieving an initial PR. Patients with stable or progressing disease should be referred urgently for CAR-T cell therapy. BTKi should generally not be stopped abruptly due to the risk of rapid tumor progression.
 ii. Patients intolerant to ibrutinib should be trialed on alternative BTKi (if possible) prior to referral for cellular therapy.
 iii. If responding to second-line therapy (PR/CR), fit and eligible for allogeneic SCT, particularly if high risk disease (e.g. \textit{TP53} mutation), consider referral for opinion regarding allogeneic SCT. However, CAR-T cell therapy is now preferred before allogeneic SCT for most patients with relapsed MCL given the reduced risks of toxicity and non-relapse mortality.
 iv. If not responding to therapy, \textit{OR} progressing on BTKi, refer urgently for CAR-T cell therapy
Lymphoblastic lymphoma227-233: Patients with lymphoblastic lymphoma require aggressive combination chemotherapy, similar to regimens used in acute lymphoblastic leukemia (ALL), involving induction, consolidation, prophylactic intrathecal chemotherapy and either maintenance therapy or first remission allogeneic SCT (occasionally autologous SCT). Refractory or relapsed patients should be considered for allogeneic SCT if not done previously.

Burkitt lymphoma234-236: Patients with \textit{classical Burkitt Lymphoma} require aggressive combination chemotherapy with prophylactic intrathecal chemotherapy. Acceptable regimens such as \textit{R-CODOX-M/IVAC} are described in Appendix A. First-remission autologous SCT should be considered for patients who cannot tolerate timely administration of full dose \textit{R-CODOX-M/IVAC} (particularly with adverse prognostic features). DA-EPOCH-R is an alternative intensive chemotherapy regimen that is easier to tolerate than \textit{R-CODOX-M/IVAC} and could be considered in fit, older patients or patients with comorbidities who are deemed appropriate for curative intent therapy237, 238.

Patients who do not have classical Burkitt Lymphoma (eg. Double hit DLBCL, Unclassifiable with features intermediate between DLBCL and Burkitt Lymphoma, etc) do not seem to achieve high cure rates with \textit{R-CODOX-M/IVAC}, and instead should receive different induction therapy, often with first remission ASCT (see section on DLBCL above).

Special Problems in Lymphoma Management

Gastric MALT lymphoma:
For complete staging evaluation, patients with gastric MALT lymphoma require cross-sectional imaging plus upper GI endoscopy with multiple mucosal biopsies for Helicobacter pylori. Gastric MALT lymphoma should be staged according to the Lugano or Paris staging systems for GI lymphomas:

<table>
<thead>
<tr>
<th>Lugano GI staging system239</th>
<th>Paris staging system240</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I</td>
<td>Stage I</td>
</tr>
<tr>
<td>Confined to GI tract (single primary or multiple, non-contiguous)</td>
<td>T1m N0 M0</td>
</tr>
<tr>
<td></td>
<td>T1sm N0 M0</td>
</tr>
<tr>
<td></td>
<td>T2 N0 M0</td>
</tr>
<tr>
<td></td>
<td>T3 N0 M0</td>
</tr>
<tr>
<td>Stage II</td>
<td>Perigastric lymph nodes</td>
</tr>
<tr>
<td>Stage II\textsubscript{1}</td>
<td>More distant regional nodes</td>
</tr>
<tr>
<td>Local nodal involvement</td>
<td>T1e3 N1 M0</td>
</tr>
<tr>
<td></td>
<td>T1e3 N2 M0</td>
</tr>
<tr>
<td>Stage II\textsubscript{2}</td>
<td>Invasion of adjacent structures with or without abdominal lymph nodes</td>
</tr>
<tr>
<td>Distant nodal involvement</td>
<td>T4 N0e2 M0</td>
</tr>
<tr>
<td>Stage IIE</td>
<td>Extra-abdominal lymph nodes</td>
</tr>
<tr>
<td>Penetration of serosa to involve adjacent organs or tissues</td>
<td>T1e4 N3 M0</td>
</tr>
<tr>
<td></td>
<td>T1e4 N0e3 M1</td>
</tr>
<tr>
<td>Stage IV</td>
<td>Distant (non-</td>
</tr>
<tr>
<td>Disseminated extranodal involvement or</td>
<td></td>
</tr>
</tbody>
</table>
concomitant supra-
diaphragmatic nodal involvement

T1e4 N0e3 M2 contiguous) GI sites involvement
Non-GI sites of involvement

Adapted from “Marginal zone lymphomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up”201

1) Localized (stage I-II\textsubscript{1}) H. pylori positive gastric MALT lymphoma: Stage I-II\textsubscript{1} H. pylori positive gastric MALT lymphoma should be treated with quadruple antibiotic H. pylori eradication therapy (e.g. PAMC or PBMT) in accordance with current guidelines 242. This achieves responses in up to 70-80% of patients with excellent long-term event-free survival, although response rates are lower for patients with t(11;18)243-247. H. pylori eradication should be confirmed with stool antigen or urea breath test once off antibiotics for ≥4 weeks and off PPIs for ≥2 weeks, and an alternative second-line regimen should be given to patients with persistent H. pylori. After treatment with antibiotics, patients should undergo repeat gastroscopy at 3 months, then every 6 months for 2 years, then annually for 3 years. Biopsies should be taken for lymphoma and H. pylori each time. Gastric MALT lymphoma may respond within several weeks or slowly regress over 12-18 months after H. pylori eradication. Referral to the cancer centre is not required unless persistence of disease is documented after successful H. pylori eradication. If lymphoma recurs or persists more than 12-18 months after H. pylori eradication, the patient should receive moderate dose (e.g. 24-30 Gy) upper abdominal ISRT which results in excellent outcomes 248-251. Patients could also be considered for initial ISRT in addition to H. pylori therapy if the tumour is associated with t(11;18). Rituximab or chemoimmunotherapy may be considered for patients ineligible for or relapsing after RT 252-254.

2) Localized (stage I-II\textsubscript{1}) H. pylori negative gastric MALT lymphoma: For the minority of patients whose gastric biopsies are negative for H. pylori, non-invasive testing (e.g. stool antigen test, urea breath test, and/or serology) should be performed to confirm H. pylori status. H. pylori-negative gastric MALT lymphoma is more likely to be associated with t(11;18)255,256. A trial of H. pylori eradication may still be considered as up to 38% of cases of H. pylori negative gastric MALT lymphoma can respond to antibiotics 257, presumably due to false negative testing or infection with other helicobacter species 258; these patients should receive ISRT if there is no evidence of lymphoma regression after 3-6 months on repeat endoscopy. Alternatively, initial treatment with ISRT can be considered since the majority will not respond to H. pylori eradication, whereas ISRT achieves complete responses in >95% of patients with long-term event-free survival rates of 80-90% 240, 259-262. Repeat endoscopy should be done 3-6 months after ISRT to confirm response. The decision to treat with initial ISRT versus a trial of H. pylori eradication should be individualized and made in conjunction with patient wishes.

3) Advanced (stage II\textsubscript{2}, IIE or IV) gastric MALT lymphoma: These patients should be managed as advanced stage indolent B-cell lymphoma with active surveillance if asymptomatic or chemoimmunotherapy if symptomatic disease. These patients should also receive H. pylori eradication therapy.
Testicular lymphoma263-266:
In contrast to other patients with localized large B-cell lymphoma, patients with stage IAE or IIAE testicular lymphoma are cured less than 50% of the time using brief chemotherapy and irradiation. Thus, the recommended treatment for all stages of testicular lymphoma is a full course of chemotherapy (R-CHOP x 6 cycles). An additional problem often seen in these patients is relapse in the opposite testicle. This can be prevented by scrotal irradiation (25-30Gy/10-15 fractions). Finally, these patients are at high risk for CNS relapse. Although some experts recommend prophylactic intrathecal chemotherapy, especially for stage 3-4 disease, this has not been proven effective. Unfortunately, many of the CNS relapses occur within the brain parenchyma, and are not prevented by intrathecal chemotherapy. For this reason, CNS prophylaxis should involve high dose intravenous methotrexate 3.5g/m2 every 14-28 days x 2-3 doses after completion of all 6 cycles of R-CHOP.

Primary CNS lymphoma (PCNSL)263, 267-278:
Diagnosis of PCNSL is based on a biopsy of the brain lesion, or pathological examination of a vitrectomy or CSF specimen. A bone marrow biopsy and CT scan of the chest, abdomen, and pelvis is required to rule out systemic disease. Additional staging tests include CSF cytology (only if lumbar puncture is not contraindicated because of intracranial hypertension and midline shift). HIV serology should also be obtained.

Treatment of PCNSL involves induction chemotherapy including high dose methotrexate 3.5g/m2 every 2 weeks for 4 to 5 doses. Intrathecal methotrexate has not been shown to be beneficial if high-dose methotrexate is used. In a phase II trial, 79 patients aged 18 to 75 years with ECOG 0-3 and mostly low-to-intermediate IELSG risk were randomized to treatment with high dose methotrexate plus cytarabine or high-dose methotrexate alone for 4 cycles every 3 weeks, followed by whole brain radiotherapy (WBRT)267. The investigators reported superior CR (18% vs. 46%, \(p=0.006\)), ORR (40% vs. 69%, \(p=0.009\)) and 3 year EFS (24% vs. 35%, \(p=0.02\)) for patients treated with high-dose methotrexate and cytarabine versus high-dose methotrexate alone. It is therefore recommended to include high-dose methotrexate and cytarabine during induction therapy for PCNSL267.

Whole brain radiotherapy (WBRT) has fallen out of favour for PCNSL, based in part upon high rates of severe neurotoxicity following high-dose methotrexate, and in part due to the results of the G-PCNSL-SG1 randomized controlled trial, in which 551 immunocompetent PCNSL patients (median age 63 years) were randomized to chemotherapy followed by WBRT (arms A1, B1) or chemotherapy alone (arms A2, B2)279. 411 patients entered the post-high dose methotrexate phase, and 318 of these patients were treated per protocol. For this per protocol population, there were no differences in median OS (32.4 vs. 37.1 months, \(p=0.8\)) or median PFS (18.3 vs. 12 months, \(p=0.13\)) between the chemotherapy plus WBRT arms (A1+B1, n=154) or chemotherapy alone arms (A2+B2, n=164), respectively279. A recent study suggests neurotoxicity can be reduced by decreasing WBRT dose to 23.4Gy after CR to induction HDMTX-based chemotherapy. The 2-year PFS was 78% in these patients278.
Although patients with refractory or relapsed PCNSL typically have dismal outcomes, autologous stem cell transplantation (ASCT) has shown promising results in this setting. Soussain et al. (2001) have reported a 3-year event-free survival (EFS) rate of 53% for patients with relapsed/refractory PCNSL undergoing ASCT following high dose thiotepa, busulfan and cyclophosphamide (TBC) conditioning.

Small studies have demonstrated durable remissions with ASCT for PCNSL, however, the optimal conditioning regimen remains undefined. With the knowledge of our initial encouraging experience with TBC/ASCT, and the lack of any widely accepted standard treatment for PCNSL, TBC/ASCT consolidation was considered an acceptable option to treat consenting PCNSL patients at our centre. Review of our data proved the efficacy of this therapy (PFS 52% at 5 years post TBC/ASCT) but with significant toxicity (5 treatment-related deaths, all occurring in patients over 60 yrs). To reduce the TRM, we modified our protocol to omit cyclophosphamide starting in 2011. We recently completed a retrospective review of the outcomes of this protocol for patients treated between Nov 2011 and Dec 2017. In total, 42 patients with a median age of 61 yrs (42-82) were diagnosed with PCNSL from November 2011 – December 2017 in Alberta. Of these 42 patients, 26 patients with a median age of 56.5 years (42-63) were initially deemed to be transplant-eligible and achieved a 3 year PFS rate of 78.3%, even though only 21 (81%) actually received ASCT. Of the 5 who did not proceed to ASCT, 2 had progressive disease on induction and 2 had toxicity to induction preventing ASCT. There was no transplant-related mortality. The 3 yr PFS was 81.2% for the 21 patients who received TBu/ASCT after 2011 compared to only 54.5% for 22 historical control patients who received TBC/ASCT as part of upfront therapy for PCNSL prior to 2011 in Alberta, with respective 3 yr OS rates of 87.1% and 54.5%.

The Anocef-Goelams PRECIS prospective randomized phase II trial evaluated high dose chemotherapy and ASCT consolidation using TBC conditioning (n=38) vs WBRT (n=38) after induction therapy (R-MBVPx2 then R-AraC x2) for PCNSL pts 18-60yo in 23 French centres, and reported 2 yr PFS rates of 86.8% vs 63.2% in favor of ASCT in 284. Based on these data, we recommend TBu/ASCT consolidation therapy for all eligible PCNSL patients.

The role of Rituximab in treating PCNSL was evaluated in the International Extranodal Lymphoma Study Group (IELSG) 32 study, which randomized patients with histologically-proven primary CNS lymphoma to receive a maximum of four 3-week cycles of methotrexate at 3.5 g/m2 on day 1 and cytarabine at 2 g/m2 twice daily on days 2 and 3, either alone (arm A; n = 75), in combination with 375 mg/m2 of rituximab on day -5 and 0 (arm B; n = 69), or combined with rituximab at the same dose plus 30 mg/m2 of thiotepa on day 4 (MATRIX arm; n = 75). The study was conducted at 52 locations across five countries. The median patient age was 58 years (range, 18-70) and all patients were HIV-negative. Overall, patients had an ECOG PS ≤3, with patients aged 66 to 70 years having an ECOG PS ≤2. Patient characteristics were well balanced among the study arms. Autologous stem cells were successfully collected after the second treatment course in 152 patients (94%). In the MATRIX arm C, the overall response rate was 87% (95% CI, 80-94) compared with 74% (95% CI, 64-84), and 53% (95% CI, 42-64) in arms B and A, respectively (P = .00001 for A vs C) 287. As reported by Dr. Andrés
Ferreri at the ASH 2016 conference (abstr 511), at a median follow-up of 40 months, the PFS rate was approximately 55% in the MATRIX arm C, 39% in arm B, and 29% in arm A, with OS rates of 63%, 46%, and 31%, respectively. Of the 219 enrolled patients, 118 (54%) patients without progressive disease (n=52) or excessive toxicity/poor mobilization/refusal (n=49) underwent a second randomization comparing consolidation with whole-brain irradiation (n=59) or ASCT (n=59). The CR rate similarly improved from 54% after induction up to 94% after either consolidation therapy, suggesting a very important role for consolidation therapy. There were no statistically significant differences in PFS after the two consolidation treatments (3yr PFS approximately 60-70%), however, neurotoxicity rates were higher in the WBRT arm.

The potential benefit of rituximab with induction chemotherapy was not confirmed in different phase III trial by HOVON 105/ALLG NHL 24\(^{288}\), in which 119 patients in Netherlands, Australia and New Zealand were randomized to 2 cycles of induction (MTX, BCNU, teniposide, prednisone) with or without rituximab, then followed by consolidation with cytarabine and WBRT 30Gy (+10Gy boost) if <60yrs of age. This study reported non-significantly different 1 year EFS rates of 49% and 52% for rituximab vs no rituximab (ORR 87% and CR 67%).

The Alberta Lymphoma Group established a provincial PCNSL Treatment Protocol in November 2011. The rationale behind the 2011 protocol included:

1) Induction chemotherapy:
 a. First 2 cycles: HDMTX 3.5g/m2 d1,15 with procarbazine 100mg/m2 po d1-7. This treatment had been shown to induce response and is tolerable for patients who may be debilitated at the time of initial diagnosis of PCNSL. Cytarabine was not added to first cycle HDMTX because patients may not tolerate intensive therapy well until performance status improves.
 b. Stem Cell Mobilization and Apheresis: to be done with first dose of Cytarabine because stem cells may not mobilize well after multiple cycles Cytarabine/G-CSF. Rituximab will be used in addition to Cytarabine due to reports that lymphoma cells can circulate in blood and marrow in patients with PCNSL\(^{289}\), and Rituximab may decrease risk of collecting contaminated autograft as has been shown for other B-cell lymphomas.
 c. Final 2 Cycles will combine Cytarabine with HDMTX as done in a prior IELSG study to improve response rates and decrease frequency of primary progressive disease\(^{267}\).
 d. Rituximab was added in 2016 for a total of 6 doses during induction to improve response

2) High Dose Chemotherapy (patients <70 yo with no significant co-morbidities, KPS>60% after induction therapy, and PCNSL not secondary to immune suppression):
 a. Thiopeta 300mg/m2 x2d and Busulfan 3.2mg/kg x3d without cyclophosphamide. Because cyclophosphamide does not penetrate the blood brain barrier particularly well, its omission may decrease treatment-related mortality without decreasing cure rates compared to the previous TBC regimen.

3) Ifosfamide consolidation (transplant refusal or ineligible patients):
a. Ifosfamide crosses BBB approximately 30%, and gives some exposure of PCNSL to alkylating agent therapy290, 291.

Recommendations: PCNSL Transplant-Eligible (Usually <70 years old)

The above evidence suggests that transplant-eligible patients are best treated with HDMTX/AraC-based induction followed by TBu/ASCT consolidation. There also is a potentially important role for the addition of rituximab to induction chemotherapy when ASCT consolidation is used. However, the optimal number of induction chemotherapy cycles is unknown, and perhaps as soon as a patient achieves a response and is physically well, they should proceed directly to ASCT before the disease starts to progress, or cumulative toxicity from further induction therapy prevents ASCT consolidation. As such, the 2018 PCNSL guidelines have been modified to decrease the length of induction therapy prior to ASCT. We have not incorporated MATRIX induction, because the use of MATRIX may decrease the ability of patients to proceed to ASCT due to toxicity, increased likelihood of patient refusal due to treatment-fatigue, or due to poor stem cell mobilization. We believe the use of ASCT is more important than the use of MATRIX. Our real world outcomes using non-MATRIX induction and TBu/ASCT are numerically superior to those reported in the MATRIX study. We also increased the age limit for the transplant eligible protocol to 75 years, however, patients over age 70 years must be extremely healthy with no comorbidities and must also be highly motivated to receive TBu/ASCT. The increased age limit is supported by studies showing reasonable outcomes and tolerability of high dose therapy and ASCT for patients over age 65 years. For example, Schorb and colleagues reported TRM of only 3.8% and 2 year PFS of 80% for front-line and 54% for 2nd line thiotepa-based high dose therapy and ASCT in 52 PCNSL patients aged 65-77 years (median 68)233. MATRIX could, however, be used for transplant-eligible patients who refuse transplant.

Recommendations: PCNSL Transplant-Ineligible

There is no current standard of care for elderly PCNSL. We previously recommended high dose methotrexate in combination with high dose cytarabine with or without WBRT consolidation. In a recent review of our local data, of the 16 patients who were considered transplant-ineligible at diagnosis, their median age was 70 yrs (61-82), and only 8 were initiated on the transplant ineligible protocol of methotrexate and cytarabine (others received palliation only (n=4), WBRT alone (n=1), and single agent MTX alone (n=3). The 3 yr PFS rate for the 16 transplant ineligible patients was 0%. Based on these results and the poor quality of life associated with repeated hospitalisations for methotrexate, we propose an outpatient regimen of cytarabine, rituximab and thiotepa for patients who are unfit for transplant but motivated to attempt intensive therapy. This regimen should be considered for patients who are ECOG 0-2 and ambulatory. All other non-transplant eligible patients should be offered WBRT and or palliation alone.

1) Not chemotherapy candidates due to CIRS score>6 or ECOG≥3 after dexamethasone therapy:
 a. palliative WBRT or
b. best supportive palliative care only

2) Chemotherapy candidates with CIRS score=0-6 and ECOG 0-2:
 a. Cytarabine, Rituximab and Thiotepa x 2-4 cycles
 b. MATRIX x 2-4 cycles.
 c.

Restaging should be performed after 2 cycles of therapy. Patients who fail to achieve a radiological and/or clinical response after 2 cycles should be considered for palliation or referral for consolidation WBRT.

For a detailed description of recommended PCNSL treatment regimens, please refer to Appendix A, subheading VII, sections A and B.

For palliative therapy, doses of cranial radiotherapy should be 30Gy in 10-20 fractions.

Eye lymphoma

Orbital or peri-orbital lymphoma\(^{263, 292}\): Peri-orbital lymphoma of the bony orbit or the soft tissues in and around the orbit but outside of the globe and optic nerve should be managed as indicated in the earlier sections on aggressive lymphomas, marginal zone lymphomas or follicular lymphoma, as appropriate for the type and stage of the lymphoma. Approximately 40% of such patients have advanced disease discovered when carefully staged. In general, 25-30Gy/20 fractions radiotherapy to whole orbit/periorbital tissue is recommended for indolent peri-orbital lymphomas.

Conjunctival lymphoma\(^{263, 292}\): Lymphoma involving the conjunctiva but not the structures within the globe or the optic nerve is usually of low grade and should be treated with 25-30Gy/20 fractions of radiotherapy. Doses, fields, and shielding specifically modified for treatment of the eye are necessary to minimize long-term complications such as xerophthalmia or cataract formation.

Intra-ocular and optic nerve lymphoma\(^{263, 293}\):

- Lymphoma involving the vitreous, retina or other structures within the optic nerve or globe is usually of large cell type and is equivalent to PCNSL. Bilateral involvement is common. Evaluation and management should be the same as for PCNSL. Acceptable treatment involves induction chemotherapy with high dose methotrexate and high dose cytarabine as described for PCNSL in Appendix A.
- Lymphoma involving the uveal structures (choroid) is a rare presentation of lymphoma, and is usually of indolent type. This disease is best managed with treatment appropriate for stage and local extent of disease.
Aggressive T-Cell Lymphomas:

NK/T-cell lymphoma, nasal type

Natural killer (NK)/T-cell lymphoma, nasal type is a rare and aggressive extranodal neoplasm that almost exclusively affects Asian and South American adults in the fifth decade of life, with a male:female ratio of approximately 3:1. It typically arises in the nasal cavity or surrounding structures, such as the sinuses, palate, nasopharynx, tonsils, hypopharynx, and larynx. While the pathogenesis of NK/T-cell lymphoma, nasal type is not well understood, the Epstein-Barr virus (EBV) is implicated in almost all cases. Approximately 25% of cases show a p53 mutation; in addition, p21 overexpression is also frequent in nasal NK/T-cell lymphoma, and seems to be independent of p53 gene status.

Hematopathological evaluation of a biopsy specimen from the site of involvement is the basis for diagnosis of nasal NK/T-cell lymphoma. The recommended immunohistochemistry panel includes:

- B-cell: CD20
- T-lineage antigens: CD2, CD7, CD8, CD4, CD5, CD3
- NK lineage markers: CD56
- Cytotoxic granules (granzyme B and/or TIA-1)
- Ki-67
- *In situ* hybridization for EBV-encoded RNA (EBER)

For patients with early-stage nasal NK/T-cell lymphoma (ENKTCL), early or upfront radiotherapy (intensive regimens such as a total dose ≥ 50 Gy) plays an essential role in therapy, and has been associated with higher overall survival and complete response rates compared to chemotherapy alone. However, radiotherapy alone is also associated with high relapse rates. Combined modality therapy is recommended with sequential and concurrent chemo-radiotherapy regimens having relatively equivalent outcomes. No standard of care therapy exists for ENKTCL and most novel regimens incorporate L-asparaginase into treatment due to high single agent activity. Given the recent discontinuation of L-asparaginase, we favour the combination of peg-asparaginase with gemcitabine and oxaliplatin (P-GEMOX) for patients with limited stage disease. With this approach, treatment is initiated with 2 cycles of P-GEMOX, followed by radiotherapy (48-56 Gy) followed by 2 further cycles of P-GEMOX restarted 1 week after completion of radiotherapy. Radiotherapy may be introduced earlier in the therapy if feasible and early referral for radiotherapy is recommended for all patients with limited stage ENKTCL. With this approach, in 33 patients, the ORR was 94% and 2 year PFS and OS were 77% and 83% respectively. Notably, Grade 3-4 toxicities were rare.

For patients with stage III-IV disease, complete remission rates are less than 15%, and the median overall survival is approximately 4 months. The recommended options for therapy include either enrollment in a clinical trial or treatment with an L-asparaginase-based combination chemotherapy
regimen. The most well-studied regimen is the SMILE regimen with several small series of patients reported305-307. While the SMILE regimen was first reported to have excellent response rates (overall, and complete in 79% and 45%, respectively) in relapsed/refractory patients, an updated study of the use of the SMILE regimen as frontline therapy for advanced stage patients reported a short median OS (12.2 months; 1-year OS was 45%) with a high rate of TRM (5 of 87 patients died of sepsis)305. While the GOLD regimen has less reported patients, the toxicity is significantly less (Grade 3-4 neutropenia of 16% compared to SMILE of 92%306 with serious infections in 4% and 31-45%305, 306 of patients treated, respectively). For this reason, patients of advanced age or with comorbidities or a history of infections should be considered for therapy with GOLD for 2-4 cycles followed by SCT if possible while younger, fit patients can be treated with SMILE x 2 cycles with a goal of proceeding to SCT as consolidation. The role of allogeneic or autologous SCT is not yet well defined because of limited data; but it is suggested when possible for advanced stage or relapsed/refractory patients.

Early phase data suggests efficacy of the checkpoint inhibitor class (pembrolizumab) for relapsed/refractory ENKTCL. While this therapy is not funded in AB, it is the recommended approach for patients with relapsed/refractory ENKTCL who are fit enough to consider additional therapy, if drug access can be obtained308, 309.

Peripheral T-cell lymphomas (PTCL)310-318.

With the exception of ALK-positive anaplastic large cell lymphoma, CHOP chemotherapy cures less than 30% of patients with PTCL. Options that may be associated with higher cure rates include CHOP x 4-6 cycles followed by HDCT/ASCT in responding patients or brentuximab-vedotin + CHP or intensification of CHOP with etoposide (CHOEP).319

The ECHELON-2 study was a Phase 3 of CD30+ (\geq10\% by immunohistochemistry) PTCL with IPI \geq 2 comparing CHOP with BV-CHP. The median PFS was improved with BV-CHP at 48.2 months compared to 20.8 months with CHOP. Overall survival was also numerically superior in the BV-CHP arm. Important toxicities were comparable between the arms. Unfortunately, the study was not powered to detect differences between the different subtypes of PTCL and the study was biased to include a majority of patients with ALCL (70%). Patients with ALK+ ALCL were 22\% of the population and had the largest noted benefit from the addition of BV-CHP. The subgroup of AITL patients appeared to do slightly worse with BV-CHP compared to CHOP but patient numbers were small. Given the lack of single agent efficacy in non-anaplastic subtypes, it remains unclear if there is any benefit to BV-CHF in non-anaplastic subtypes of PTCL such that it can not be recommended that BV be routinely implemented for those patients at this time.

The German High-Grade Non-Hodgkin Lymphoma Study Group (DSHNHL) analyzed results of 343 PTCL patients treated within their trials320. The majority belonged to the four major T-cell lymphoma subtypes: anaplastic large cell lymphoma (ALCL), ALK-positive (n=78); ALCL, ALK-negative (n=113); peripheral T-cell lymphoma, unspecified (PTCLU; n=70); and angioimmunoblastic T-cell lymphoma.
(AITL; n=28). Treatment consisted of 6-8 courses of CHOP or CHOP plus etoposide (CHOEP). Three-year event-free and overall survival rates were 75.8% and 89.8% for the ALCL, ALK-positive patients, 50.0% and 67.5% for the AITL patients, 45.7% and 62.1% for the ALCL, ALK-negative patients, and 41.1% and 53.9% for the PTCLU patients. The International Prognostic Index (IPI) was effective in defining risk groups with significantly different outcomes. For patients, 60 years of age or younger with LDH levels \leq upper normal value, etoposide was associated with an improvement in 3-year EFS (75.4% vs. 51.0%, $p=0.003$)310. Aviles and colleagues recently reported the results of a phase III trial involving 217 patients with PTCL unspecified311. Patients were treated with either CMED every 14 days x 6 cycles or standard CHOP. The 10-year PFS was 70% in the CMED group versus 43% in the CHOP group ($p<0.01$), and the 10-year OS was 60% in the CMED group versus 34% in the CHOP group ($p<0.01$)311.

Retrospective and prospective phase II trials support the use of SCT as part of upfront therapy for PTCL. Sieniawski and colleagues reported 5-year PFS rates of 60% for 26 patients with enteropathy associated T-cell lymphoma treated with IVE-methotrexate induction therapy followed by autologous SCT, compared to only 22% for 54 patients treated with CHOP-like therapy alone311. Two prospective trials have also been reported. In the first, Reimer and colleagues reported results of CHOP x 4-6 cycles followed by dexabexad or ESHAP followed by CyTBI/ASCT for 83 patients (including 32 with PTCL-not otherwise specified, and 27 with angioimmunoblastic T-cell lymphoma)313. Fifty-five of the 83 patients received transplantation. In an intent-to-treat analysis, with a median follow-up time of 33 months, the estimated 3-year OS, DFS, and PFS rate were 48%, 53%, and 36%, respectively321. In the second prospective trial, Rodriguez and colleagues from the Spanish Lymphoma and Autologous Transplantation Cooperative Group reported the results of 74 patients transplanted in the first complete response (65% had 2-3 aaIPI risk factors)314. With a median follow-up of 67 months from diagnosis, the 5-year OS and PFS rates were 68% and 63%, respectively.

For PTCL patients who relapse following CHOP-type induction and respond to salvage therapy, ASCT should be recommended, as several studies report similar ASCT outcomes to those seen with relapsed DLBCL. Brentuximab vedotin may be considered for those patients with CD30+ anaplastic large cell lymphoma who have had failure of initial chemotherapy322.

For patients who are ineligible for ASCT or who have failed ASCT, PFS and OS is extremely short and end of life care and planning should be implemented. Palliative therapy options include chemotherapy (with limited expectation of response or benefit), and pralatrexate.

Romidepsin, previously funded in this space, has been withdrawn from the market and is no longer a treatment consideration.

The prospective PROPEL trial evaluated the effectiveness of pralatrexate in patients with relapsed or refractory peripheral T-cell lymphoma. N=111 patients received pralatrexate after a median 3 prior
therapies (range: 1-12). The overall response rate was 29% with 11% achieving complete response. The median duration of response was 10.1 months. Median PFS and OS were 3.5 months and 14.5 months, respectively. The most common grade ≥3 AEs were thrombocytopenia (32%), mucositis (22%), and anemia (18%).

Summary of treatment recommendations for PTCL.

1. Anaplastic large cell lymphoma:
 a. ALK positive: BV-CHP x 6 cycles
 b. ALK negative: IPI 0-2: BV-CHP x 6 cycles
 IPI 3-5: BV-CHP x 6 cycles + HDCT/ASCT if eligible

2. All other subtypes of PTCL:
 - <60 years of age with IPI=0-2: CHOEP x 6 cycles
 - <60 years of age with IPI=3-5: CHOP or CHOEP x 4 cycles, then HDCT/ASCT
 - >60 years of age: CHOP or CEOP x 6 cycles +/- HDCT/ASCT

3. NK/T-cell lymphoma, nasal type:
 - recommendation for stage I-II NK/T cell lymphoma: P-GEMOX x 2 cycles (then IFRT (48-56 Gy) then 1 week later, 2 further cycles P-GEMOX (total 4 cycles)

AIDS-related lymphomas

In general, the treatment of AIDS-related lymphoma should be the same as for non-AIDS related lymphoma if the AIDS does not otherwise compromise the patient’s performance status and he/she is free of coincident serious opportunistic infection. HAART should be given with CHOP chemotherapy. Treatment should be planned in conjunction with the patient’s HIV physician and an antiviral regimen without overlapping toxicity should be chosen. R-CHOP results in the highest rates of disease-free survival, but may also increase the risk of infectious complications and treatment-related mortality in patients with CD4 counts below 50.

Post-transplant lymphoproliferative disease (PTLD) after Solid Organ Transplant in Adults:

1. Epidemiology. Post-transplant lymphoproliferative disorder (PTLD) is a heterogeneous disease with clinical and pathologic manifestations ranging from benign lymphoid hyperplasia (ie. early lesions) to aggressive lymphoma (ie. monomorphic PTLD). PTLD and its treatment cause a high rate of mortality and graft loss in patients with solid organ transplants (SOT). The incidence of PTLD is highest in multivisceral (>10%) and lowest in renal transplants (1-5%), attributed to intensity of immunosuppression and amount of lymphoid tissue in the allograft. Epstein-Barr virus (EBV) infection drives the pathogenesis in PTLDs occurring early post-transplant; conversely, PTLDs occurring after prolonged immunosuppression tend to be monomorphic with no detectable EBV genome, calling an infectious etiology into question. An epidemiologic shift in PTLD has occurred in the most recent decade: the median latency time from transplant to PTLD has increased from 1 to 3 years and the proportion of EBV-positive vs. -negative PTLD has decreased, attributed to EBV viral load monitoring in EBV seronegative (ie. high risk) patients.
2. **Diagnosis and staging.** Diagnostic tissue must be reviewed by expert pathologists and subtyped according to the WHO341. Several small case series have confirmed that PET-CT is an effective imaging modality for staging in PTLD342-347. However, some subtypes of PTLD, such as early lesions and T-cell lymphomas, may not be FDG-avid, necessitating CT as an alternate staging modality.

3. **Management.** Recommendations for the management of PTLD in SOT are based on few phase II clinical trials, retrospective case series, and expert opinion348-350. The mainstays of therapy for CD20-positive PTLD in SOT include reduction of immune suppression (RIS), rituximab, and chemotherapy; adoptive immunotherapy is promising but considered experimental and is unavailable in Alberta. All patients should undergo RIS to the lowest tolerated levels under the direction of the transplant physician as soon as the diagnosis of PTLD is confirmed348. A recommended strategy is to discontinue antiproliferative agents and reduce the calcineurin inhibitor by 25-50% while maintaining the steroid348. Published response rates vary widely (0-73%) and responses are seen within 2 to 4 weeks351-353.

3a. **Early lesions, polymorphic and CD20-positive monomorphic PTLD.** RIS may serve as definitive treatment of early lesions, but if response is incomplete further treatment with surgery or radiation is favored. In contrast, polymorphic and monomorphic PTLDs require definitive treatment along with RIS, discussed in further detail below348-350 (Figure 3).

Surgery and radiation. Patients with localized PTLD, such as isolated skin, GI or renal allograft lesions, can achieve prolonged remissions with surgery or localized radiation351, 354. Some experts consider surgical resection of isolated GI lesions prior to initiating systemic therapy to reduce early mortality from bowel perforation349. Radiation alone is generally not curative, with exception of plasmacytoma-like PTLD355, and should not be used as primary treatment348. Radiation may be used for palliating obstructive or compressive symptoms where systemic therapy fails or is not possible348.

Chemotherapy. SOT patients do not tolerate chemotherapy well, often developing severe infection or prolonged cytopenias. Estimates of efficacy of chemotherapy in treatment of PTLD in SOT are limited by the almost entirely retrospective nature of publications. Results of retrospective studies of anthracycline-based chemotherapy, mainly CHOP, show ORRs of 65-73% and 5-year OS of 25-78%; however, treatment-related mortality (TRM) is up to 31%356-360.

Rituximab. Several retrospective reviews and phase II clinical trials have confirmed the efficacy of rituximab monotherapy in CD20-positive PTLD post-SOT in patients that fail to respond to RIS. Phase II trials show overall response rates (ORR) of 44% to 71% and CR rates of 26% to 53% after 4 weekly doses with no reported TRM361-364. However, 57% of patients treated with rituximab monotherapy in 2 prospective trials had progressive disease within 12 months; risk factors for survival and need for further treatment included age > 60, ECOG ≥ 2, elevated LDH, and lack of CR after
rituximab365. Therefore rituximab causes minimal toxicity but remissions achieved are durable in only a minority of patients.

\textit{Sequential therapy}. Efficacy of a sequential treatment regimen (4 weekly doses of rituximab followed by 4 cycles of CHOP) was established in a phase II international multicentre trial in adult CD20-positive PTLD in SOT (n=70) in an attempt to improve upon the success of rituximab monotherapy and diminish the toxicity of chemotherapy366. The ORR was 60% after initial rituximab, increasing to 90% after sequential chemotherapy. EBV-positive and –negative PTLDs responded equally. OS was 61% at 3 years and time to progression was 69% at 3 years. There were no TRM events related to rituximab and 11% ascribed to CHOP. In a subsequent analysis, the authors concluded that patients who achieved CR and those in PR with a low-risk IPI score after rituximab monotherapy had a low risk of disease progression367.

A subsequent phase II trial utilized risk-stratified sequential therapy, in which patients in CR (by CT) after 4 doses of rituximab received 4 further 3-weekly doses of rituximab, and those not in CR after initial rituximab proceeded to RCHOP (4 cycles supported with GCSF). With 152 patients treated, endpoints were superior to sequential therapy (3-year OS 70%, 3-year TTP 73%, TRM 7%), and response to initial rituximab was highly predictive of OS, TTP and PFS (p<0.001)368, 369.

In summary, rituximab monotherapy is effective first-line treatment in most CD20-positive PTLDs with minimal toxicity. Risk-stratified sequential therapy offers the highest survival rates published to date, and allows patients in CR after rituximab monotherapy to avoid chemotherapy. Close follow-up for disease progression is recommended for patients that received rituximab alone. For PTLD that behaves aggressively (ie. IPI 3-5) or progresses during initial treatment with rituximab, proceed directly to RCHOP before completing 4 doses of rituximab (Figure 3).

3b. \textit{Primary CNS PTLD}. In the largest reported retrospective series of primary CNS PTLD (n=84), patients treated with rituximab and/or cytarabine (most often given after MTX) survived longer, but significant variation in regimens precluded firm conclusions370. Patients with acceptable renal function and performance status should be offered high-dose methotrexate and rituximab, and others may benefit from palliative radiation349, 370.

3c. \textit{Burkitt Lymphoma PTLD}. Several case series cite acceptable outcomes in this rare subtype of PTLD with chemotherapy regimens ranging in intensity371-373. However, no definite recommendations can be made and treatment should be considered individually.

3d. \textit{CD20-negative monomorphic PTLDs}. Rare subtypes of PTLD that resemble non-transplant lymphomas, such as Hodgkin Lymphoma-like PTLD, T cell monomorphic PTLD, plasmablastic PTLD and plasma cell dyscrasias, require specific chemotherapeutic treatment similar to their non-transplant counterparts (reviewed by348, 349).
4. Prognosis. The risk of death from NHL is significantly higher in SOT compared to non-transplant patients374, and PTLD increases the graft failure rate 5-fold375. Retrospective series of PTLD post-SOT report OS of 30-68\% at 5 years, with excess mortality in the first year post-diagnosis334, 339, 376-378. Adverse prognostic factors from retrospective studies include monomorphic subtype, monomorphic T-cell, bone marrow or CNS involvement, advanced stage, poor performance status, advanced age, elevated LDH, and hypoalbuminemia338, 339, 362, 378-380. Risk factors for worsened OS in the PTLD-1 prospective trial include IPI 3-5, thoracic organ transplant and lack of CR after rituximab monotherapy367. A prognostic score developed from 500 PTLD cases in renal transplant patients is described in Table 8; the score was calculated with the exclusion of patients with monomorphic T-cell and CNS PTLD, both of which carried an adverse prognosis, but the score maintains its ability to discriminate risk groups in the whole population375.
Figure 1. Treatment Algorithm for Polymorphic or Monomorphic (DLBCL) PTLD Post-SOT

Table 8. Post-Transplant Lymphoproliferative Disorders in Renal Transplant Prognostic Score (148). (One point is given for each of elevated LDH, disseminated PTLD (ie. higher than stage 1), monomorphic PTLD, and serum creatinine level >133 µmol/L; 2 points are given for creatinine >133 µmol/L if age > 55 at PTLD diagnosis.)

<table>
<thead>
<tr>
<th>Risk Group (# Risk Factors)</th>
<th>% Alive at 1/5/10 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (0)</td>
<td>100/92/85</td>
</tr>
<tr>
<td>Moderate (1)</td>
<td>89/83/80</td>
</tr>
<tr>
<td>High (2-3)</td>
<td>74/59/56</td>
</tr>
<tr>
<td>Very High (4-5)</td>
<td>52/35/0</td>
</tr>
</tbody>
</table>
References

46. Schmitz N, Nickelsen M, Ziepert M, Haenel M, Borchmann P, Viardot A. Aggressive chemotherapy (CHOEP-14) and rituximab or high-dose therapy (MegaCHOEP) and rituximab for young, high-risk patients with aggressive B-cell lymphoma: results of the megaCHOEP trial of the German High-Grade Non-Hodgkin Lymphoma Study Group (DSHNL). *Blood.* 2009;(ASH Annual Meeting Abstracts); 114 (22)(Abstract 404).

www.ahs.ca/guru

78. Abramson J. Pivotal safety and efficacy results from fey and efficacy results from TRANSCEND-NHL001, a multicenter phase 1 study of lisocabtagen maraleucel (liso-cell) in relapsed/refractory (R/R) large B-cell lymphomas. 2019;Abstract 241.

89. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H. *World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues*. International Agency for Research on Cancer (iARC); 2008.

www.ahs.ca/guru

Rituximab/Cytarabine (RB/RC) Induction Chemotherapy for Transplant
Merryman RW, Kahl BS, Redd RA, Bsat J, Ch
2016;173(1):89
and Rituximab
Armand P, Redd R, B
official journal of the American Society of Clinical Oncology
Cell Lymphoma Younger Trial of the European Mantle Cell Lymphoma Network.
rescue: a nonrandomized p
survival of mantle cell lymphoma after intensive front
Dreyling M. ASCT for Mantle Cell Lymphoma in First Remission.
defines indolent forms of mantle cell lymphoma.
GELA.
Stem Cell Transplantation (ASCT) in Mantle Cell Lymphoma (MCL) : Final Results of a Phase II Study from the
Stem Cell Transplantation (ASCT) in Mantle Cell Lymphoma: Lon
radiochemotherapy followed by autologous stem cell transplantation in first remission significantly prolongs
progression-free survival in mantle-cell lymphoma: results of a prospective randomized trial of the European MCL
Stem Cell Transplantation (ASCT) in Mantle Cell Lymphoma: Lon
mantle cell lymphoma.
Witzig TE. Current treatment approaches for mantle-cell lymphoma. Journal of clinical oncology : official journal of
the American Society of Clinical Oncology. 2005;23(26):6409-6414.
radiochemotherapy followed by autologous stem cell transplantation in first remission significantly prolongs
progression-free survival in mantle-cell lymphoma: results of a prospective randomized trial of the European MCL
after treatment of newly diagnosed aggressive mantle-cell lymphoma with rituximab plus hyper-CVAD alternating
with rituximab plus high-dose methotrexate and cytarabine. Journal of clinical oncology : official journal of
the American Society of Clinical Oncology. 2005;23(28):7013-7023.
Eve HE, Furtado MV, Hamon MD, Rule SA. Time to treatment does not influence overall survival in newly
Dreyling M. ASCT for Mantle Cell Lymphoma in First Remission. ASH. 2008:a769.
with mantle cell lymphoma after autologous haematopoietic stem-cell transplantation in first remission: a post-hoc
analysis of an open-label, multicentre, randomised, phase 3 trial. The Lancet Haematology. 2021 Sep 2021;8(9)
survival of mantle cell lymphoma after intensive front-line immunochemotherapy with in vivo-purged stem cell
rescue: a nonrandomized phase 2 multicenter study by the Nordic Lymphoma Group. Blood. 2008;112(7):2687-
2693.
Hermine O, Jiang L, Walewski J, Bosly A, Thieblemont C, Szymczyk M, et al. High-Dose Cytarabine and
Autologous Stem-Cell Transplantation in Mantle Cell Lymphoma: Long-Term Follow-Up of the Randomized Mantle
Merryman RW, Kahl BS, Redd RA, Bsat J, Chase ML, LaCascse AS, et al. Rituximab/Bendamustine and
Rituximab/Cytarabine (RB/RC) Induction Chemotherapy for Transplant-Eligible Patients with Mantle Cell

229. Santini G, Sweetenham JW, Simnett S. Autologous stem cell transplantation in first remission improves outcome in adult patients with lymphoblastic lymphoma: results from a randomized trial of the European Group for Blood and Marrow transplantation (EBMT) and the UK lymphoma group (UKLG). *Bone Marrow Transplant*. 1998;21(European Group for Blood and Bone Marrow Transplantation Meeting Abstracts):Abstract 624.

www.ahs.ca/guru

www.ahs.ca/guru

www.ahs.ca/guru

309. Cheng J, Liu B, Farjat A, Routh J. National Ch...

Swerdlow SH, Campo E, Harris NL, et al. WHO Classification fo Tumours of Haematopoietic and Lymphoid Tissues. 2008;

59

www.ahs.ca/guru

IV. Cutaneous Lymphomas\(^1\)\(^{-}\)\(^25\)

Table 1. Classification criteria of primary cutaneous lymphomas (WHO 2016)

<table>
<thead>
<tr>
<th>Disease entity</th>
<th>Subtype</th>
<th>Minimum diagnostic workup</th>
<th>Other useful diagnostic tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Cutaneous T-Cell Lymphomas</td>
<td>Mycosis fungoides (MF)</td>
<td>Classic MF</td>
<td>IHC: CD2, CD5, CD7, PD1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Folliculotropic MF</td>
<td>DUSP22-IRF4 translocations (tumor stage)(^1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pagetoid reticulosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Granulomatous slack skin disease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sezary’s syndrome (SS)</td>
<td>Clinico-pathological correlation supported by: skin biopsy (IHC and TCRr)</td>
<td>PD-1 (IHC and FC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blood: CD5, CD7, CD26, CCR4, CD158k, Sezary cell absolute count in blood smear</td>
<td>Blood: CD4/CD8 ratio (FC), clonality by TCRr or TCRVbeta chain Abs</td>
</tr>
<tr>
<td></td>
<td>Primary cutaneous CD30+ lymphoproliferative disease</td>
<td>Typical skin lesions and histopathology</td>
<td>IHC: CD2,3,5,CD7,CD15, TIA-1, granzymeB, CD56, betaF1, MUM-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• IHC: CD3, CD4, CD8, CD30, ALK, EMA</td>
<td>FISH: 6p25 rearrangement (DUSP22-IRF4)</td>
</tr>
<tr>
<td></td>
<td>Subcutaneous panniculitis-like T-cell lymphoma (SPTCL)</td>
<td>Typical skin lesions and histopathology</td>
<td>IHC: granzyme B, TCR-gamma,-(\beta)F1,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• IHC: CD3, CD8,CD4,TIA-1 , CD56, CD30, EBER</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• TCRr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EBV-associated T-cell especially extranodal NK/T cell lymphoma</td>
<td>nasal type angioimmunoblastic hydroa vacciniforme-like lymphoproliferative disorder</td>
<td>IHC: TIA-1, granzymeB, CD56, CD21,PD-1, CXCL13, CD10, bcl-6, CD20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• EBER by ISH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CD3,CD56,CD4,CD8, CD2,CD5,CD7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• EBV antibody profile and DNA load</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• TCR and IgH clonality status</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Primary cutaneous acral CD8+ lymphoma</td>
<td>Typical skin lesions and histopathology</td>
<td>IHC: TIA-1 granzymeB, perforin, KI67, (\beta)F1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• IHC: CD4,CD8,CD3, CD2,CD7 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• TCRr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pc CD8+ aggressive epidermotropic cytotoxic T-cell lymphoma</td>
<td>Typical skin lesions and histopathology</td>
<td>IHC: TCR-gamma, granzymeB, perforin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• IHC: CD2, 3, 4, 5, 7, 8, 15, 30, 45RA, TIA-1, CD56, betaF1, EBER by FISH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• TCRr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pc gamma-delta T-cell lymphoma</td>
<td></td>
<td>IHC: TCR-gamma, granzymeB, perforin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• IHC: CD2, 3, 4, 5, 7, 8, 30, 45RA, TIA-1, CD56, betaF1, EBER by ISH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• TCRr</td>
<td></td>
</tr>
</tbody>
</table>

\(^*\)not included in formal WHO classification of pc lymphomas

\(^1\) DUSP22-IRF4 translocation FISH assay is not routinely available in Alberta
<table>
<thead>
<tr>
<th>Lymphoma Type</th>
<th>Clinical Picture</th>
<th>Immunohistochemistry</th>
<th>Other</th>
<th>Abbreviations</th>
</tr>
</thead>
<tbody>
<tr>
<td>pc CD4+ small/medium cell T-cell lymphoproliferative disorder</td>
<td>Clinical picture, sudden</td>
<td>CD4, CD8, CD3, PD-1, CD30, CD7, CD56, TIA-1, CD20</td>
<td>IHC: CXCL13, BCL6</td>
<td></td>
</tr>
<tr>
<td>pc PTL NOS</td>
<td>IHC: CD2, 3, 4, 5, 7, 8, 30, TIA-1, CD56, betaF1, EBER by FISH</td>
<td>IHC: TCR-gamma, granzymeB, CXCL13, CD10, bcl-6, CD20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Cutaneous B-Cell Lymphomas</td>
<td>Typical skin lesions and histopathology—R/O EBV+ mucocutaneous ulcer</td>
<td>IHC: CD2, 3, CD5, CD20, CD10, bcl-2, bcl-6, MUM-1, kappa/lambda</td>
<td>-CD30, CD138, FOX-P1, EBER by ISH (in DLBL), Ki-67, Cyclin D1, CD79a, CD21, CD23, MYD88L265P mutation in DLBLLT</td>
<td></td>
</tr>
<tr>
<td>pc follicle center lymphoma (pc FCL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pc diffuse large B-cell lymphoma, leg type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Lymphomas Presenting In The Skin (Not Included In Wo2016 Classification)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intravascular B-cell lymphoma*</td>
<td>Intravascular B-cell lymphoma*</td>
<td>IHC: CD2, 3, CD5, CD20, CD79a, CD10, bcl-2, bcl-6, MUM-1, kappa/lambda, CD56, CD30, betaF1, EBER1, TIA-1, granzymeB, ALK-1</td>
<td>Ig rearrangement</td>
<td></td>
</tr>
<tr>
<td>Blastic plasmacytoid dendritic cell neoplasm (BPDCN)</td>
<td>Variable clinical presentation; diagnosis based on histopathology and IHC</td>
<td>TCRr</td>
<td>granzymeB, TCL-1, CD303 TCR-gamma, βF1</td>
<td></td>
</tr>
<tr>
<td>Adult T-cell leukemia lymphoma</td>
<td>Variable but often skin-based clinical presentation; diagnosis based on histopathology and IHC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tfh lymphoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: Pc = primary cutaneous, IHC = immunohistochemistry, TCRr = TCR rearrangement, FC = flow cytometry.
<table>
<thead>
<tr>
<th>Classification</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (skin)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0</td>
<td>No clinically and/or histopathologically suspicious lesions</td>
<td>Patch indicates any size skin lesion without significant elevation or induration whereas a plaque is elevated or indurated. Presence/absence of hypo- or hyperpigmentation, scale, crusting, poikiloderma or ulceration should be noted.</td>
</tr>
<tr>
<td>T1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1a patch only</td>
<td>Limited patches, papules, and/or plaques covering <10% of the skin surface.</td>
<td></td>
</tr>
<tr>
<td>T1b plaque +/- patch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>Patches, papules or plaques covering >= 10% of the skin surface.</td>
<td></td>
</tr>
<tr>
<td>T2a patch only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2b plaque +/- patch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>One or more tumors (>=1-cm diameter)</td>
<td>Confluence of erythema covering =>80% body surface area.</td>
</tr>
<tr>
<td>T4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N (lymph nodes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>No clinically abnormal peripheral lymph nodes</td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>Clinically abnormal peripheral lymph nodes; histopathology Dutch grade 1 or NCI LN0-2.</td>
<td>Abnormal peripheral lymph node indicates any palpable peripheral node that on physical examination is firm, irregular, clustered, fixed or 1.5 cm or larger in diameter. Node groups examined on physical examination include cervical, supraclavicular, epitrochlear, axillary, and inguinal. Central nodes, which are not generally amenable to pathologic assessment, are not currently considered in the nodal classification unless used to establish N3 histopathologically.</td>
</tr>
<tr>
<td>N1a – clone negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1b – clone positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>Clinically abnormal peripheral lymph nodes; histopathology Dutch grade 2 or NCI LN3</td>
<td></td>
</tr>
<tr>
<td>N2a – clone negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2b – clone positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3</td>
<td>Clinically abnormal peripheral lymph nodes; histopathology Dutch grades 3-4 or NCI LN4; clone positive or negative</td>
<td></td>
</tr>
<tr>
<td>Nx</td>
<td>Clinically abnormal peripheral lymph nodes; no histologic confirmation</td>
<td></td>
</tr>
<tr>
<td>B (peripheral blood)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B0</td>
<td>Absence of significant blood involvement: <=5% of peripheral blood lymphocytes are atypical (Sézary) cells</td>
<td>For blood, Sézary cells are defined as lymphocytes with hyperconvoluted cerebriform nuclei. Alternatives to Sézary cell count: (1) expanded CD4+ or CD3+ cells with CD4/CD8 ratio of 10 or more, (2) expanded CD4+ cells with abnormal immunophenotype including loss of CD7 or CD26.</td>
</tr>
<tr>
<td>B0a – clone negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B0b – clone positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>Low blood tumor burden: >5% of peripheral blood lymphocytes are atypical (Sézary) cells but does not meet the criteria of B2</td>
<td></td>
</tr>
<tr>
<td>B1a – clone negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1b – clone positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>High blood tumor burden: =>1000/uL Sézary cells with positive clone</td>
<td></td>
</tr>
<tr>
<td>M (visceral organs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M0</td>
<td>No visceral organ involvement</td>
<td>For viscera, spleen and liver may be diagnosed by imaging criteria.</td>
</tr>
<tr>
<td>M1</td>
<td>Visceral involvement (must have pathology confirmation and organ involved should be specified)</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Staging of mycosis fungoides and Sezary’s syndrome26-29

<table>
<thead>
<tr>
<th>Clinical Stages and 5-year Disease Specific Survival (%)</th>
<th>T</th>
<th>N</th>
<th>M</th>
<th>B</th>
<th>5-year DSS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0,1</td>
<td>98</td>
</tr>
<tr>
<td>IB</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0,1</td>
<td>89</td>
</tr>
<tr>
<td>IIA</td>
<td>1-2</td>
<td>1,2</td>
<td>0</td>
<td>0,1</td>
<td>89</td>
</tr>
<tr>
<td>IIB</td>
<td>3</td>
<td>0-2</td>
<td>0</td>
<td>0,1</td>
<td>56</td>
</tr>
<tr>
<td>IIIA</td>
<td>4</td>
<td>0-2</td>
<td>0</td>
<td>0</td>
<td>54</td>
</tr>
<tr>
<td>IIIB</td>
<td>4</td>
<td>0-2</td>
<td>0</td>
<td>1</td>
<td>48</td>
</tr>
<tr>
<td>IVA\textsubscript{1}</td>
<td>1-4</td>
<td>0-2</td>
<td>0</td>
<td>2</td>
<td>41</td>
</tr>
<tr>
<td>IVA\textsubscript{2}</td>
<td>1-4</td>
<td>0-2</td>
<td>0</td>
<td>2</td>
<td>23</td>
</tr>
<tr>
<td>IVB</td>
<td>1-4</td>
<td>0-3</td>
<td>1</td>
<td>0-2</td>
<td>18</td>
</tr>
</tbody>
</table>

Staging procedures for Mycosis Fungiodes/Sezary Syndrome

- **Complete physical examination:** Describe type size of skin lesions, estimate percentage of body surface area involved, presence of palpable lymph nodes, and organomegaly
- **Skin biopsy:** At least one biopsy required, several concurrent biopsies may be indicated
- **Blood tests:** CBC with differential, liver function tests, creatinine, LDH. Peripheral blood flow cytometry and molecular studies for TCR gene rearrangement in cases of suspected Sezary Syndrome
- **Imaging:** For MF stage IA no additional imaging techniques are necessary. For patients with MF stage II or higher imaging including CT scan of chest, abdomen, and pelvis and/or FDG-PET scan are recommended. Full body imaging for MF stage IB (T2N0M0) is discretionary, and simple CXR and select U/S imaging may be adequate
- **Lymph node biopsy:** Biopsy of enlarged (>1.5cm) or abnormal lymph node. Preference given for nodes with abnormal uptake on FDG-PET. Excisional biopsy is preferred in cases of MF in order to reliably discriminate dermatopathic lymphadenopathy from that involved with lymphoma
- **Bone marrow biopsy:** Bone marrow biopsy and aspiration is not a routinely recommended procedure in MF unless a patient has stage IV disease (B2)

Treatment of mycosis fungoides/sezary syndrome

Overview

MF at early stages (I-IIA) should preferentially be treated with skin-directed therapies (SDT) including phototherapy, topical steroids, nitrogen mustard. Treatment can be combined with biological
response modifiers (IFN-α, retinoids) in cases of resistant or progressive skin disease. Local radiotherapy plays a key role in palliation and treating sanctuary sites. Total skin electron beam therapy is highly effective in T2 or T3 disease however its widespread use is limited by the availability of this technique. Predictably, chemotherapy leads to short remission durations and therefore should be reserved after other therapies have been tried. Its use should be limited to tumour (T3) or more advanced stages. It may be considered frontline in cases with histologic large-cell transformation and high risk features (see discussion below). Monotherapy (low-dose methotrexate, gemcitabine) is generally preferred over combination chemotherapy (e.g. CHOP) unless the patient has extensive burden of disease (nodal and extra-cutaneous and is fit to tolerate. Targeted therapies have demonstrated activity in MF/SS, and are currently reserved for the relapsed/refractory setting or in clinical trials. The optimal conditions for allogenic bone marrow transplant have not been elucidated, but may play a role in highly selected cases (see discussion below). Extracorporeal photopheresis is a unique treatment modality indicated for the treatment of erythrodermic MF/SS. Consensus recommendations for the treatment of MF/SS have recently been updated and are outlined elsewhere. The following table intends to summarize a management approach.

Table 4. Treatment of mycosis fungoides

<table>
<thead>
<tr>
<th>Therapy</th>
<th>Mycosis Fungoides</th>
<th>SS/E-MF</th>
<th>Dose and potential toxicities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Early stage disease</td>
<td>Advanced stage disease</td>
<td></td>
</tr>
<tr>
<td>Expectant policy</td>
<td>++</td>
<td></td>
<td>Suitable for stage I in conjunction with symptomatic treatment if required. Patient with single lesion can be considered for RT for “curative therapy”</td>
</tr>
<tr>
<td>Topical Corticosteroids</td>
<td>++++</td>
<td>++</td>
<td>Potent steroids such as Clobetasol/betamethasone, long term use can cause side effects such as skin atrophy</td>
</tr>
<tr>
<td>PUVA</td>
<td>+++</td>
<td>+</td>
<td>For patch/plaque disease.2-3 X week. Limited availability, available only in Edmonton/Calgary. Risk of skin cancer with cumulative dosing</td>
</tr>
<tr>
<td>UVB</td>
<td>++++</td>
<td>+</td>
<td>For thin patch only, as skin penetration not as deep, 2-3 x week. Risk of skin cancer with cumulative dosing</td>
</tr>
<tr>
<td>Topical Carmustine</td>
<td>++</td>
<td></td>
<td>Has to be compounded. Erythema, mostly mild but can be severe</td>
</tr>
<tr>
<td>Oral Bexarotene</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
</tr>
</tbody>
</table>

www.ahs.ca/guru
<table>
<thead>
<tr>
<th>Treatment</th>
<th>Rating</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interferon alpha</td>
<td>++</td>
<td>3-5 MU/d or 3 x week. Difficult tolerating the drug, cytopenias, thyroid disturbance, mood changes. It can be combined with PUVA, ECP, and Retinoid.</td>
</tr>
<tr>
<td>HDACi: Vorinostat, romidepsin</td>
<td>+</td>
<td>Vorinostat, 400 mg po daily, S/E diarrhea, nausea, QT prolongation, cytopenias. Not on the Formulary, only through private insurance. Romidepsin-14mg/M2 iv day1,8,15 of a 28 day cycle, QT prolongation, metabolized by CYP3A4. Limited data in combination, can be used with ECP.</td>
</tr>
<tr>
<td>Oral Methotrexate</td>
<td>+</td>
<td>20-30mg/week can be given up to 60-70 mg/week. Watch for cytopenias, liver dysfunction. Can be used in combination with ECP, PUVA, and IFN.</td>
</tr>
<tr>
<td>Localized radiotherapy</td>
<td>+++</td>
<td>Localized plaques, tumors or nodules</td>
</tr>
<tr>
<td>TSEB</td>
<td>+</td>
<td>For widespread disease. Can be repeated but high cumulative doses associated with skin toxicity. Patient to travel to Ontario.</td>
</tr>
<tr>
<td>ECP</td>
<td>++</td>
<td>Available only in Calgary, needs IV access, which can be problematic</td>
</tr>
<tr>
<td>Alemtuzumab</td>
<td>+</td>
<td>Available through Clinigen on compassionate basis. Low dose 10mg three times a week, may be effective decreasing the risk of infections</td>
</tr>
<tr>
<td>Brentuximab</td>
<td>+++</td>
<td>Shown to be effective with all levels of CD30</td>
</tr>
</tbody>
</table>
Staging and treatment of non-MF cutaneous lymphomas19, 23, 25, 34

Table 5. Diagnostic workup and staging

<table>
<thead>
<tr>
<th>Classification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T T1</td>
<td>Solitary skin lesion</td>
</tr>
<tr>
<td></td>
<td>• T1a: a solitary lesion with diameter <5cm</td>
</tr>
<tr>
<td></td>
<td>• T1b: a solitary lesion with diameter >5cm</td>
</tr>
<tr>
<td>T2</td>
<td>Regional skin involvement (multiple lesions limited to 1 body region or 2 contiguous body regions)</td>
</tr>
<tr>
<td></td>
<td>• T2a: skin lesions present in a <15-cm diameter circular area</td>
</tr>
<tr>
<td></td>
<td>• T2b: skin lesions present in a >15-cm and <30-cm diameter circular area</td>
</tr>
<tr>
<td></td>
<td>• T2c: skin lesions present in a >30-cm diameter circular area</td>
</tr>
<tr>
<td>T3</td>
<td>Generalized skin involvement</td>
</tr>
<tr>
<td></td>
<td>• T3a: multiple lesions involving 2 noncontiguous body regions</td>
</tr>
<tr>
<td></td>
<td>• T3b: multiple lesions involving 3 or more body regions</td>
</tr>
<tr>
<td>N N0</td>
<td>No clinical or pathologic lymph node involvement</td>
</tr>
<tr>
<td>N1</td>
<td>Involvement of 1 peripheral lymph node region that drains an area of current or prior skin involvement</td>
</tr>
<tr>
<td>N2</td>
<td>Involvement of 2 or more peripheral lymph node regions or involvement of any lymph node region that does not drain an area of current or prior skin involvement</td>
</tr>
<tr>
<td>N3</td>
<td>Involvement of central lymph nodes</td>
</tr>
<tr>
<td>M M0</td>
<td>No evidence of organ disease</td>
</tr>
<tr>
<td>M1</td>
<td>Extracutaneous organ disease</td>
</tr>
</tbody>
</table>
Staging of other types of non-MF cutaneous lymphomas

Table 6. Diagnostic workup

<table>
<thead>
<tr>
<th>Disease entity</th>
<th>Laboratory and radiologic workup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphomatoid papulosis</td>
<td>• Screening for concurrent cancer may be warranted in elderly patients or presence of risk factors</td>
</tr>
</tbody>
</table>
| pcALCL | • CBC with diff, blood chemistries and LDH
• PET/CT or CT
• Lymph node biopsy (if clinically or radiologically abnormal)
• Bone marrow biopsy in patients with evidence of extracutaneous disease or multiple tumors |
| Subcutaneous panniculitis-like T-cell lymphoma (SPTCL) | • CBC with diff, blood chemistries and LDH,
• PET/CT or CT
• Lymph node biopsy (if clinically or radiologically abnormal)
• Bone marrow biopsy in patients with evidence of extracutaneous disease, multiple tumors or hematocytophagic syndrome |
| CD4+ small/medium cell primary cutaneous T-cell lymphoproliferative disorder | • None |
| Aggressive pcCTCL: Extranodal NK/T-cell lymphoma, CD8+ aggressive epidermotropic cytotoxic T-cell lymphoma; gamma-delta T-cell lymphoma, Blastic plasmacytoid dendritic cell neoplasm | • As other aggressive lymphomas |
| Extranodal MZL with cutaneous presentation | • CBC with diff, blood chemistries and LDH
• Borrelia serology |
| pcFCL | • CBC with diff, blood chemistries and LDH
• PET/CT or CT
• Lymph node biopsy (if clinically or radiologically abnormal)
• Bone marrow biopsy |
| pc diffuse large B-cell lymphoma, | • CBC with diff, blood chemistries and LDH
• PET/CT
• Lymph node biopsy (if clinically or radiologically abnormal) |
| Primary cutaneous acral CD8+ lymphoma | None |
Treatment of other types of non-MF cutaneous lymphomas

Table 7. Treatment of other types of cutaneous lymphomas

<table>
<thead>
<tr>
<th>CTCL Subtype</th>
<th>First line treatment</th>
<th>Second or third line treatment</th>
</tr>
</thead>
</table>
| Lymphomatoid papulosis | Observation
* Solitary lesion
* Large/stigmitizing lesion
* Multifocal | Topical carmustine 0.2-0.4%*
Surgical excision
Local radiotherapy
Narrow band UVB
Psoralen UVA light therapy
Low dose MTX (5-25mg/wk) | Interferon alpha
Isotretinoin or Alitretinoin |
| Primary Cutaneous ALCL | Surgical excision
Local radiotherapy (15Gy)
Low dose MTX (5-25mg/week) maintenance
CHOP or CEOP | Isotretinoin or Alitretinoin
Interferon
Single agent chemotherapy (gemcitabine, etoposide)
Brentuximab vedotin* |
| Subcutaneous panniculitis-like T-cell lymphoma | Systemic corticosteroids, alone, or in combination with methotrexate | Cyclosporine §
Vorinostat¶
Local radiotherapy
Oral Bexarotene† |
| Primary cutaneous acral CD8+ T-cell lymphoma
* Provisional entity | Intralesional corticosteroids
Local radiotherapy | |
| Primary cutaneous CD4+ small/medium T-cell lymphoproliferative disorder
* If tumour rapidly growing or > 5cm, High Ki67 | Observation
Topical corticosteroids
Intralesional corticosteroids
Local radiotherapy | Local radiotherapy |
| Primary cutaneous aggressive epidermotropic CD8+ cytotoxic T-cell lymphoma
Primary cutaneous γδ T-Cell lymphoma | Multiagent chemotherapy (CHOP or CEOP) plus IFRT
30Gy/10 or 45Gy/25 | Vorinostat¶
HDT/ASCT or Allogeneic stem cell transplantation in eligible candidates |
| Blastic plasmacytoid dendritic cell neoplasm (CD4+/CD56+ hematodermic neoplasm) | Multiagent chemotherapy (CHOP or CEOP) | Single agent chemotherapy (Gemcitabine) |
| Primary cutaneous extranodal NK/T cell lymphoma, nasal type | Combined Modality (CHOP or CEOP plus IFRT) for localized presentation
SMILE or equivalent for advanced stage | HDT-ASCT in eligible patients with relapsed/refractory

| Primary Cutaneous Marginal Zone Lymphoma or Primary Cutaneous Follicle Center Lymphoma
- Solitary lesion
- Multifocal lesions
- *B. burgdorferi* associated pcMZL | Surgical excision
Local radiotherapy (15-35Gy)
Observation
Chlorambucil
Rituximab monotherapy*
Antibiotics (cephalosporin or doxycycline) | Intralesional corticosteroids
Intralesional rituximab (5-20mg per lesion q4week x 3-6 cycles)*
Treat as systemic (R-Bendamustine x 6)

| Primary cutaneous large B cell lymphoma, leg type | R-CHOP x 6 +/- IFRT
IFRT +/- rituximab monotherapy*
if frail | *Short term director’s privilege (STDP) required
§ Short term exceptional drug therapy (STEDT) approval required
⌘ Health Canada Special Access Program required
¶ Not covered by AHS Cancer Control Drug Benefit list. Manufacturer’s reimbursement assistance program available.
★ Manufacturer application required for access. Drug not funded.
Special topics in CTCL

The role of transplantation in cutaneous lymphoma

Existing studies of allogeneic stem cell transplantation in mycosis fungoides or sezary syndrome are limited to small, retrospective reports or case series. Autologous stem cell transplantation has not been associated with durable remissions and therefore has been largely abandoned for MF/SS. The following recommendations are based on best available outcome data and established consensus guidelines:

- Patients with MF/SS should be risk-stratified using the CTCL International Consortium prognosis score. Patients with high-risk disease (3 or 4 of age>60, elevated LDH, stage IV or LCT) should be considered for allogeneic transplantation as part of second line of therapy.
- Patients with advanced stage 3 or stage 4 MF/SS who progress after more than two lines of systemic therapy should be considered for allogenic transplantation.
- Selected patients with stage 2 MF/SS or with large cell transformation may be considered for allogeneic BMT.
- Patients must meet other eligibility criteria for transplant prior to being considered. Issues such as chemosensitivity (CR or PR to last line of therapy), adequate performance status (ECOG 0-2) and preserved organ function apply.
- TSEB before transplant may be considered prior to transplantation for improved skin control.
- Transplantation in other rare and aggressive CTCL such as CD8+ epidermotropic aggressive T cell lymphoma or primary cutaneous gamma-delta T cell lymphoma is at this time a largely experimental approach.
- Relapses still occur after allogeneic transplants and may be treated adjustment of immunosuppression, DLI infusion, or further skin-directed treatments. Distinguishing CTCL from transplant associated GVHD requires multidisciplinary expertise.

Large Cell Transformation in Mycosis Fungoides:

The pathologic definition of large cell transformation in mycosis fungoides (LCT-MF) is the presence of large cells (>= 4 times the size of a small lymphocyte) in 25% of more of the dermal infiltrate or forming microscopic nodules. The cells are often CD30+ by IHC however CD30- variants are also described. It is difficult to discriminate from other subtypes of cutaneous lymphoma, including cutaneous anaplastic large cell lymphoma (cALCL) or lymphomatoid papulosis (LyP), which may also coexist with mycosis fungoides.

The prognosis of LyP and cALCL is considerably more favourable than LCT-MF. Historical estimates for long-term survival with LCT-MF is less than 20%, and most series report a median survival of 2-36
months. However, a subset of patients with limited LCT-MF may follow a more indolent course. One large EORTC cohort analysis reported a median survival of 8.3 years for patients with LCT, and the authors concluded LCT is significant for disease progression but not survival outcome.

Currently, there is a lack of prospective research to guide a standardized approach for management of LCT-MF. Most patients are treated with combination chemotherapy however it remains it is unclear which patients benefit from this approach.

Several clinical and pathological characteristics in LCT-MF have been associated with poor prognosis, including advanced age (> 60 years), elevated LDH at transformation, advanced stage (III/IV), extra-cutaneous transformation, the presence of follicular mucinosis, folliculotropism, and CD30-negativity. Additional pathologic variables have been described but may not be routinely analyzable so have been omitted from these recommendations.

We recommend to consider intensive chemotherapeutic strategies (monotherapy or combination in suitable fit candidates) in patients with any of the following clinical or pathologic variables associated with high risk LCT-MF. In the absence of these, we recommend treatment as per MF guidelines (see Table I).

Clinical variables for high risk LCT-MF:
- advanced age (> 60 years)
- elevated LDH at transformation
- generalized tumours (versus solitary or regional)
- advanced stage (III/IV)
- extra-cutaneous transformation

Adverse Pathologic variables in LCT
- absent papillary dermal involvement (assessment may be limited by provided tissues)
- folliculotropism
- follicular mucinosis
- absence of fibrosis
- CD30 expression in less than 50% of neoplastic cells

Brentuximab vedotin has activity in LCT-MF. A phase 2 study of brentuximab in a heavily pre-treated CD30+ MF/SS population, the majority of whom had LCT (30/32, 90%) showed a significant response rate of 70%. A subsequent prospective, randomized controlled trial of brentuximab vedotin versus physician’s choice (MTX or bexarotene) in CD30+ CTCL demonstrated a significant improvement in objective global response lasting atleast 4 months with brentuximab (56.3% versus 12.5%). The study included both previously treatment CD30+ MF and CD30+ ALCL. Although the histologic characteristics of the CD30+ MF patients were unreported, a proportion may have had transformed MF, as this was not an exclusion criteria. Brentuximab vedotin is indicated for previously treated
CD30+ MF, and could be tried for high risk LCT-MF patients as defined above, who are either unsuitable for chemotherapy or refractory/relapsed following chemotherapy.

References

www.ahs.ca/guru

V. Hodgkin Lymphoma

Pathologic Classification

The histological sub-classification of Hodgkin lymphoma is based on the light microscopic H&E interpretation. If problems with differential diagnosis arise, staining for CD15, CD30, T-cell and B-cell panels and EMA may be helpful. For lymphocyte predominant B-Cell Hodgkin lymphoma, CD20, CD45, +/- CD57 are recommended.

Table 1. WHO classification of histologic subtypes of Hodgkin lymphoma

<table>
<thead>
<tr>
<th>Classical</th>
<th>Nodular Lymphocyte Predominant B-Cell Lymphoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Nodular Sclerosis</td>
<td></td>
</tr>
<tr>
<td>- Mixed Cellularity</td>
<td></td>
</tr>
<tr>
<td>- Lymphocyte Rich</td>
<td></td>
</tr>
<tr>
<td>- Lymphocyte Depleted</td>
<td></td>
</tr>
</tbody>
</table>

Staging

Mandatory staging procedures include:

- Pathology review whenever possible (essential for core needle biopsies)
- Complete history and physical examination (B symptoms, Etoh intolerance, pruritis, fatigue, ECOG performance score, examination of nodes, Waldeyer’s ring, spleen, liver, skin)
- CBC & differential, creatinine, electrolytes, Alk P, ALT, LDH, bilirubin, total protein, albumin, calcium
- ESR (required for limited stage patients)
- If a PET/CT is not done, then perform a bone marrow aspiration and biopsy (2cm core preferable) for patients with stage IIB-IV or cytopenias (note: flow cytometry on the marrow aspirate does not add useful information and should not be done)
- Chest x-ray (PA and lateral)
- CT scan of the neck, chest, abdomen, and pelvis
- A PET scan with body CT is preferred as initial staging and after 2 cycles of ABVD
- Pregnancy test, if at risk (consider fertility and/or psychosocial counseling)
- Semen cryopreservation if chemotherapy or pelvic radiotherapy is contemplated
- HIV: if HIV risk factors or unusual disease presentations

Primary Treatment of Classical Hodgkin Lymphoma

General principles: For treatment planning, supradiaphragmatic clinical stage (CS) I or II without bulk (mass >10cm or >1/3 maximal transthoracic diameter (MTD) on CXR) or significant B symptoms is considered limited stage. Initial treatment options for classical Hodgkin Lymphoma involve the
chemotherapy regimens ABVD, BV-AVD, or escalated BEACOPP or escalated BPDac as well as involved field radiotherapy (IFRT). Multiple phase III studies conducted by the German Hodgkin Study Group (GHSG) and other cooperative study groups have demonstrated that optimal cure rates are achieved with: 1) ABVD x2 cycles followed by 20Gy IFRT for favorable risk limited stage disease (5yr PFS >90%); 2) ABVD x4 cycles followed by 30Gy IFRT for unfavorable risk limited stage (> 3 nodal sites, ESR > 50 or >30 with B symptoms, or extranodal disease) (5yr PFS >85%); 3) escalated BEACOPP x 4-6 cycles for young healthy patients with advanced stage disease 4) BV-AVD x 6 cycles for advanced stage disease. Advanced stage patients also receive IFRT following chemotherapy to localized PET+ residual disease >2.5cm, and is considered for sites of prior bulk after ABVD.

Data supporting escalated BEACOPP for advanced stage disease: The GHSG HD9 trial conducted in the 1990s demonstrated that 8 cycles of an escalated-dose BEACOPP regimen were superior to 8 cycles of a COPP/ABVD regimen or 8 cycles of a baseline-dose BEACOPP regimen in terms of freedom from treatment failure and overall survival rates in patients with advanced-stage Hodgkin lymphoma. Each regimen was followed by consolidative radiation therapy to sites of initial bulky disease greater than 5 cm. At the 10-year analysis, freedom from treatment failure was 64% for the COPP/ABVD group, 70% for the baseline BEACOPP group, and 82% for the escalated BEACOPP group ($p<0.001$); overall survival rates were 75%, 80%, and 86%, respectively ($p<0.001$). There were higher rates of hematologic toxicities, grades 3-4 infections and higher rate of AML/MDS in the escBEACOPP group, but not an increase in all second malignancies. A meta-analysis of 4 subsequent phase III trials confirmed superior PFS (OR 0.56, 95%CI 0.38, 0.81) and long-term overall survival (OR 0.64, 95%CI 0.51, 0.81) with escBEACOPP compared to ABVD. Of importance, escBEACOPP is associated with infertility, especially in male patients. Sieniawski et al. (2008) reported that 34 of 38 patients with advanced-stage Hodgkin lymphoma became azoospermic after treatment with 8 cycles of BEACOPP, and that of the remaining 4 patients, 2 had impaired spermatogenesis. Replacement of procarbazine with dacarbazine (e.g. the escBPDac protocol) appears to result in lower rates of infertility, as described in more detail later.

The German Hodgkin Study Group recently published the results of their HD15 prospective randomized clinical trial. 2182 patients with newly diagnosed Hodgkin lymphoma aged 18-60 years with stage IIB (large mediastinal mass or extranodal lesions), or stage III-IV disease were randomly assigned to receive either 8 cycles of escBEACOPP (8Besc), 6 cycles of escBEACOPP (6Besc), or 8 cycles of BEACOPP14 (8B14). After a median follow-up of 48 months, there were 53 deaths (7.5%) in the 8Besc group, 33 (4.6%) in the 6Besc group and 37 (5.2%) in the 8B14 group. The higher number of deaths in the 8Besc group mainly resulted from acute toxicity of chemotherapy and secondary neoplasms. There were 72 secondary cancers including 29 secondary acute myeloid leukemias and myelodysplastic syndromes: 19 (2.7%) in the 8Besc group, 2 (0.3%) in the 6Besc group and 8 (1.1%) in the 8B14 group. Five year OS rates were 91.9% in the 8Besc group, 95.3% in the 6Besc group, and 94.5% in the 8B14 group. PET scans performed after chemotherapy for 822 patients revealed that 739
were in PR with residual mass ≥ 2.5 cm. 548 patients were PET-negative (74.2%) and 191 were PET-positive (25.8%). PFS was comparable between patients in CR or those in PET-negative PR after chemotherapy with 4-year PFS rates of 92.6% and 92.1%, respectively. Only 11% of all patients in the HD15 trial received additional radiotherapy as compared to 71% in the prior HD9 study.

In an attempt to reduce severe toxicities associated with escBEACOPP, an open-label, randomized, parallel-group, phase 3 trial (HD18) investigated the utility of PET after 2 cycles of standard escBEACOPP to allow for adaptation of treatment intensity. The trial included 18-60 year olds with newly diagnosed advanced-stage Hodgkin’s lymphoma (N=1945), and assigned patients (1:1) to two parallel treatment groups on the basis of their PET results after cycle 2 of escBEACOPP (PET-2). Patients with positive PET-2 were randomised to receive six additional cycles of either standard escBEACOPP (8 × escBEACOPP in total) or escBEACOPP with rituximab (8 × R-eBEACOPP) (rituximab abandoned mid-trial due to lack of efficacy). Patients with negative PET-2 were randomised between standard treatment with 4-6 additional cycles of escBEACOPP (6-8 × escBEACOPP)… the trial switched from total 8 to total 6 escBEACOPP in the standard arm after the results of HD15) or experimental treatment with 2 additional cycles only (total = 4 × escBEACOPP). Patients with negative PET-2 randomly assigned to either 6-8 × escBEACOPP (n=504) or 4 × escBEACOPP (n=501) had 5-year progression-free survival of 90.8% (95% CI 87.9-93.7) and 92.2% (89.4-95.0), respectively (difference 1.4%, 95% CI -2.7 to 5.4). 4 × escBEACOPP was associated with fewer severe infections (8% vs 15%) and organ toxicities (8% vs 18%) as compared to patients receiving 6-8 × escBEACOPP. The trial supports reducing therapy to total 4 escBEACOPP in patients who achieve PET-negative disease after 2 cycles of escBEACOPP.

Data Supporting Replacement of Procarbazine with Dacarbazine in escBEACOPP

Procarbazine and dacarbazine are both guanine methylation agents with similar mechanisms of action. Dacarbazine is thought to be less gonadotoxic and less hematotoxic than procarbazine. The pediatric EuroNet-PHL-C1 study was an open-label, non-inferiority, randomized controlled trial of children and adolescents with intermediate and advanced stage Hodgkin's lymphoma. 937 patients were randomized 1:1 to receive COPP or COPDAC (COPDAC is identical to COPP, except that procarbazine is replaced with dacarbazine). In the per-protocol analysis, event-free survival at 5 years was 89.9% for COPDD vs. 86.1% for COPDAC (difference -3.7%, 95% CI -8.0% to +0.6%). Overall survival rates at 5 years were similar (98.1% for COPP vs. 98.9% for COPDAC). Fertility outcomes were much improved in the COPDAC group, with 19 (83%) of 23 analyzed males in the COPP group having azoospermia at a median of 40 months follow-up, vs 0 of 22 males in the COPDAC group (p<0.0001). Rates of premature ovarian failure were also lower in the female patients who received COPDAC.

On the basis of interim results from the EuroNet-PHL-C1 study, it has become increasingly common practice in Europe to use escBPDac, (e.g. escBEACOPP, but with procarbazine replaced with dacarbazine), for adult patients. Retrospective data published by Santasieri et al (N=225) showed...
that, compared to 58 matched escBEACOPP controls, patients treated with escBPDac required fewer non-elective days of inpatient care (mean 3.35 vs. 5.84 days, p=0.022), fewer pRBC transfusions (mean 1.79 vs. 4.16 units; p<0.001), and had earlier return of menstruation (mean 4.64 vs. 9.12 months; p=0.0026). Efficacy was also similar to historical controls from the HD18 and RATHL trials, with 77% of patients achieving a Deauville score of 3 or less on their interim PET2, and with a 22-month PFS rate of 94.9%. Santasieri et al.29 also published whole genome sequencing data from patients exposed to either escBPDac or escBEACOPP, which strongly suggested that patients treated with escBPDac have a much lower rate of potentially oncogenic mutations in their hematopoietic stem cells (mean 291 excess mutations in escBPDac patients, compared to 1153 excess mutations in escBEACOPP patients).

Based on the above data, we recommend modifying escBEACOPP to escBPDac, by replacing procarbazine with dacarbazine.

Due to concerns of toxicity, escBEACOPP/escBPDac in Alberta should only be considered for the following patients2, 21, 22, 30-34:
- Age < 60 years
- KPS score ≥ 70 (ECOG 0-2)
- HIV negative, no other major co-morbidities
- Patients must be made aware of infertility implications, particularly if using escBEACOPP, and consent to proceed.

Data Supporting Brentuximab vedotin for Primary Therapy of Hodgkin Lymphoma

An open-label, multicenter phase 3 trial of 1334 patients with previously untreated stage III/IV Hodgkin lymphoma, randomized (1:1) patients to receive brentuximab vedotin, doxorubicin, vinblastine, and dacarbazine (BV+AVD) or ABVD. PFS outcomes favored BV-AVD over ABVD. At a median follow-up of 72.6 months, the 6-year progression-free survival estimates were 82.3% with BV-AVD and 74.5% with ABVD (hazard ratio for disease progression or death, 0.68; 95% CI, 0.53 to 0.86)35.

Neutropenia was higher in the BV+AVD group (58% vs 45%), febrile neutropenia occurred in 83 patients (rate: 11% in those receiving prophylactic GCSF and 21% in those without GCSF). Peripheral neuropathy was also higher in the BV+AVD group (67% vs. 43%), with resolution at last follow-up in 2/3 of patients. Pulmonary toxicity ≥grade 3 occurred in 1% of BV+AVD patients vs. 3% in ABVD.

Updated 6-year OS data favour BV-AVD over ABVD with estimated OS rates of 93.9% (95% CI, 91.6 to 95.5) vs 89.4% (95% CI, 86.6 to 91.7), respectively. More favorable treatment effects with BV-AVD were seen in the follow subgroups:
• patients younger than 60 years of age
• stage IV disease
• high-risk IPS subgroup
• patients living in North America

Less favorable treatment effects with BV-AVD were seen in:
• patients 60+
• women
• low IPS subgroup

Currently, Health Canada restricted approval to patients with Stage 4 disease, who are thus, the only patients currently eligible to receive this therapy in Canada. With the favourable OS data, BV+AVD should be considered in patients with stage IV HL. There are no direct comparisons of BV+AVD vs escBEACOPP/BPDac. BV+AVD has not been investigated using a PET-directed approach (the current standard for HL in Alberta). For stage 4 HL, both BV+AVD and escBEACOPP/BPDac are considered highly curative treatment options. Patient factors, such as age, comorbidities (specifically underlying pulmonary disease or neuropathy), considerations for fertility preservation, and length of treatment should factor into clinical decision making.

Data Supporting a PET-Guided Treatment Approach

Limited Stage:

In the *UK Rapid trial*, patients with stage I-IIA non-bulky HL received ABVD x3 cycles then underwent a PET scan. If the PET was positive (uptake more than blood pool, Deauville score 3-5) the patients received one more cycle of ABVD then IFRT, whereas if the PET was negative patients were randomized to observation or IFRT. The 3yr PFS was 85.9% in the 145 PET+ patients, 94.6% in the PET- patients who received IFRT and 90.8% in PET- patients who were observed. The difference in PFS was -3.8% (95%CI: -8.8%, 1.3%) exceeding the -7% non-inferiority margin. Of interest, the per-protocol PFS was 97% vs 90.8% because 26 pts did not get their allocated IFRT. The respective 3 year overall survival rates were 97.1% vs 99.0%. In the *EORTC/LYSA/FIL H10* trial, stage I-II HL patients were randomized between control arm therapy with ABVD x3 +INRT (favorable risk) or ABVD x4 +INRT (unfavorable risk), with all patients undergoing PET after cycle 2 ABVD. In the experimental arm of the study, patients received ABVD x2 then a PET scan, followed by ABVD x 2 (favorable) or 4 (unfavorable) if PET-, or escBEACOPP x2 cycles +INRT if PET+. Comparing control (INRT) and experimental (no INRT) arms for patients with negative PET after 2 cycles ABVD, the difference in PFS was -11.9% (95%CI -16.9%, -8.2%) for favorable risk (not meeting non-inferiority
endpoint) and -2.5% (95%CI -6.6%, 0.5%) for unfavorable risk (not meeting non-inferiority endpoint). There was no difference in overall survival. For patients with PET+ disease after ABVD, the 5y PFS 77% vs 91% (p=0.002) and 5yr OS 89% vs 96% (p=0.06) favouring escBEACOPP compared to ABVD + INRT.

As neither the RAPID nor H10 trials confirmed non-inferiority of the PET-directed radiotherapy omission approach, this would support the use of radiotherapy despite a negative interim PET. However, given the lack of difference in OS and small differences in PFS, a PET-directed approach is recommended, accepting the risk of reduced local control with potential need for salvage chemotherapy and transplantation at relapse, reconciled by an expected late gain in OS due to avoidance of the long term sequelae of radiotherapy such as secondary malignancy and cardiovascular disease.

Advanced Stage:

The *UK RATHL trial* treated patients with 2 cycles ABVD then performed a PET scan. 172 patients with PET+ disease (uptake > liver, Deauville 4-5) had therapy intensified to escBEACOPP whereas PET- patients were randomized to ABVD x4 (n=470) or AVD x4 (n=465). For PET- patients, 3yr PFS was 85.7% vs 84.4% for ABVD vs AVD (95%CI crossed 5% difference non-inferiority limit), the respective 3yr OS rates were 97.2% vs 97.6%, and the rate of grade 3-4 pneumonitis was 1% vs 0.2%, respectively. Recently reported long follow up of this trial, showed that at a median follow up is 87.2 months (IQR 63.0 - 104.0), the overall PFS at 7 years is 78.2% (95% CI 75.6 - 80.5) and overall survival (OS) 91.6% (95% CI 89.7 - 93.2). PFS at 7 years for ABVD was 81% (95% CI 76.9 - 84.4), and for AVD 79.2% (95% CI 75.1 - 82.8), HR: 1.10 (95%CI 0.82 - 1.47).40

- Results reliably exclude a 5% inferior 3 year PFS following de-escalation (omission of bleomycin for cycles 3-6) after a negative interim PET-CT, with no evidence of a later divergence.
- For those with a positive PET2, intensified therapy with escBEACOPP is effective and safe, with no evidence of an increase in second malignancies by comparison with the group who received ABVD/AVD.

The aforementioned HD18 study by German Hodgkin Study Group confirmed that 4 escBEACOPP was as effective as 6-8 escBEACOPP but less toxic in patients who achieved PET-negative status after 2 cycles of escBEACOPP. 3 yr PFS in this group (PET-2 negative after escBEACOPP) was 95.3% and 3 yr OS was 98.8%.
Figure 1. Treatment algorithm for Limited Stage classic Hodgkin lymphoma using PET-Guided therapy (Preferred Approach)

Limited Stage
Stage I-II
(Consider treating as advanced stage if B symptoms or Bulk)

ABVD x2

↓

PET/CT

-ve

Favourable Risk: ISRT 20Gy or ABVD x2
Unfavourable Risk: ABVD x4

+ve

eBEACOPP x2
and ISRT 30Gy (+/- 6Gy)

Omit additional Bleomycin if:
- COPD / ↓PFTs
- CrCl <80ml/min
- Age >40 years

Perform pulmonary function test at baseline and after cycles 3 and 5; omit bleomycin if >25% decrease in DLCO or FVC; decrease bleomycin dose by 50% if 10-24% decrease in DLCO or FVC

Unfavourable Risk Factors:
- ESR > 50 (or >30 with B symptoms)
- Mediastinal Mass/Thoracic Ratio >1/3
- >3 Nodal Regions*
- Extranodal disease (GHSG definition)
- Age ≥50 years (EORTC definition)

*Nodal Regions:
- EORTC includes infraclavicular/subpectoral region with axilla, whereas GHSG includes with cervical
- EORTC and GHSG combine mediastinum with bilateral hila as single region

IPS Risk Factors
- Male
- Age ≥45 years
- Stage IV
- Hb <105
- Albumin <40
- Leukocytosis (WBC ≥15)
- Lymphocytopenia <0.6 or <8%WBC

ISRT- Involved Site Radiation Therapy:
20-30-36Gy in 10-20 fractions
Figure 2. Treatment algorithm for Advanced Stage Hodgkin lymphoma using PET-Guided therapy

Advanced Stage
Stage III or
Definite B symptoms or
Bulky mass > 10 cm or
>1/3 MTD on CXR

eBEACOPP/eBPDac x2

\[\begin{align*}
& \text{PET/CT} \\
& \begin{cases}
& \text{+ve} \\
& \text{-ve}
\end{cases}
\end{align*} \]

\[\begin{align*}
& eBEACOPP/eBPDac x2 \\
& eBEACOPP/eBPDac x4 + IFRT to final PET+ residual mass
\end{align*} \]

OR

ABVD x2

\[\begin{align*}
& \text{PET/CT} \\
& \begin{cases}
& \text{+ve} \\
& \text{-ve}
\end{cases}
\end{align*} \]

\[\begin{align*}
& AVD x4 \\
& \text{Bleomycin omitted}
\end{align*} \]

eBEACOPP/eBPDac x4

if age < 60 yrs
(esp if IPS high)
+ IFRT to final PET+
residual mass

Notes:
- We favour using escBPDac over escBEACOPP, on account of improved safety and fertility outcomes. Patients receiving escBEACOPP should be aware of infertility implications, and consent to proceed.
- escBPDac/escBEACOPP are intensive regimens which should only be considered in patients who are age < 60 years, are KPS 70 or higher, are HIV negative, and have no major co-morbidities.
Management of Recurrent Hodgkin Lymphoma2, 41-56:

Similar to the initial workup, recurrent disease should involve re-staging tests.

\textit{Initial relapse.}

- Re-induction chemotherapy with GDP or DICEP then high dose therapy and autologous SCT \pm IFRT 20-30Gy to prior bulk site at relapse, or PET-positive residual disease post-ASCT
- Brentuximab vedotin consolidation post-ASCT for patients with primary refractory HL, relapse within 12 months or extranodal disease at relapse
- Pembrolizumab iv q3-6 weeks for older/unfit patients who are deemed ineligible for ASCT

\textit{Second or subsequent relapse.}

- IFRT if localized relapse in previously non-irradiated site
- A PD1-inhibitor (eg. Nivolumab or Pembrolizumab) after prior failure of chemotherapy (and autologous SCT in transplant eligible patients) [data suggests longer remissions with PD1-inhibitor compared to Brentuximab vedotin making PD1i then BV the preferred sequencing)
- Brentuximab vedotin IV q21d for up to 16 doses if prior failure of initial chemotherapy (ABVD or BEACOPP) and prior autologous SCT (excluding patients who progress on BV consolidation post-ASCT)
- Palliative chemotherapy for symptomatic patients (GDP, COPP, ChlVPP, CEPP, vinblastine)
- Allogeneic SCT only in motivated healthy patients <60 years old with chemosensitive disease, ECOG 0-2, and time to relapse of >1 year following high dose therapy and autologous SCT
Brentuximab vedotin (BV) monotherapy: 57-59

A phase II study of N=102 patients treated with BV (1.8mg/kg, outpatient IV, 30min, every 3 weeks for up to 16 cycles) for relapsed/refractory Hodgkin lymphoma after failed hematopoietic autologous stem cell transplantation reported outcomes after approximately 3-years of follow-up. Median OS and PFS were estimated at 40.5 months and 9.3 months, respectively. The estimated 3-year OS and PFS rates were 73% (95%CI: 57-88%) and 58% (95%CI: 41-76%), respectively. Younger age, good performance status, and lower disease burden at baseline were favorable prognostic factors for OS. The most common treatment-related adverse events were peripheral sensory neuropathy, nausea, fatigue, neutropenia, and diarrhea. Chen et al. reported 5-year end-of-study data. For the entire cohort, OS was 41% (95% CI: 31-51) and PFS was 22% (95% CI: 13-31). Complete response (evaluated via Revised Response Criteria for Malignant Lymphoma): was observed in 34 patients. For those who achieved CR, OS and PFS rates were 64% (95% CI: 48-80%) and 52% (95% CI: 34-69%), respectively (median OS and PFS not yet reached). At the time of study close, 13 CR patients remained in remission (4 received consolidative hematopoietic allogeneic stem cell transplant; 9 received no further anticancer treatment). Of those patients who experienced BV associated peripheral neuropathy, 88% experienced either resolution (73%) or improvement (14%) in symptoms.

Consolidation with Brentuximab Veditin after ASCT

The AETHERA clinical trial evaluated a strategy of consolidation with brentuximab vedotin after autologous stem cell transplantation in high risk relapsed Hodgkin lymphoma patients. Patients were eligible for BV if they were either: refractory to frontline treatment, relapsed < 12months after frontline therapy, or relapsed >= 12 months with extranodal involvement. Patients were randomized to receive either BV (1.8mg/kg every 3 weeks for up to 16 cycles) or placebo. 5 year PFS was 59% for BV versus 41% for placebo. Grade 3-4 peripheral motor and sensory neuropathy was observed in 6 and 10% of patients receiving BV consolidation, however, improves or resolves in the majority of patients.

PD1-inhibitors: 60

The open-label phase III Keynote-204 study compared pembrolizumab (n=151) versus brentuximab in relapsed or refractory classic Hodgkin lymphoma, with the dual primary end points of PFS and OS. The interim analysis did not include OS data, however, with a median follow-up after randomization of 25.7 months, median PFS was 13.2 months (95%CI: 10.9-19-4) for pembrolizumab versus 8.3 months (95%CI: 5.7-8.8) for brentuximab vedotin (HR: 0.65; 95%CI: 0.48-0.88; p=0.003). Serious treatment-related AEs occurred in 16% of pembrolizumab patients and 11% of brentuximab vedotin patients. Grade 3-5 treatment-related adverse events were: pneumonitis 4% in the pembrolizumab group vs 1% in the brentuximab vedotin group, neutropenia 2% vs 7%, decreased neutrophil count 1% vs 5%, and peripheral neuropathy 1% vs 3%, respectively. The study included patients who had relapsed after ASCT and patients who were ASCT-ineligible making PD1 inhibition the preferred secondline therapy
for non-transplant eligible patients and the preferred third line therapy for patients who relapse post-ASCT.

CheckMate 205, a single-arm, multicenter, phase 2 study enrolled patients with relapsed/refractory Hodgkin lymphoma who failed autologous hematopoietic cell transplantation to receive nivolumab (3 mg/kg every 2 weeks until disease progression/unacceptable toxicity). After a median follow-up of 18 months, 40% of patients were still on treatment. Objective response rates were 65-73% dependent on cohort, (overall 69%). The median duration of response was 16.6 months (95%CI: 13.2-20.3m), and median PFS was 14.7 months (95%CI: 11.3-18.5m). Most common grade 3-4 AEs included lipase increases (5%), neutropenia (3%), and ALT increases (3%).

Nodular Lymphocyte Predominant B-Cell Lymphoma

This rare subtype of B cell lymphoma typically has a very indolent course with excellent survival. This entity was formerly called “Nodular Lymphocyte Predominant Hodgkin Lymphoma” (NLPHL), but recently, major biological and clinical differences with classic Hodgkin lymphoma have led to this name change in the 2022 ICC classification. The 5th edition of the WHO classification continues to use the term “Nodular Lymphocyte Predominant Hodgkin Lymphoma”, but considers the new nomenclature acceptable in preparation for future definitive adoption.

Patients most commonly present with early stage disease, the clinical course is indolent and the prognosis is very favourable. Similar to other indolent CD20+ lymphoma, late relapses as well as transformation to DLBCL or to T-cell/histiocyte-rich large B-cell lymphoma (3–5% of cases) can occur. Even after relapse, patients may survive for many years, and therefore minimizing risk of treatment-related mortality is important.

The diagnosis of nodular lymphocyte predominant B-cell lymphoma may sometimes require excisional lymph node biopsy that may remove all gross disease, in which case observation alone can be considered after staging with PET-CT. In terms of treatment recommendations, patients with residual but localized nodular lymphocyte predominant B-cell lymphoma (stage 1-2A with ≤2 contiguous sites of disease) should be offered involved-site radiotherapy (ISRT). Patients with Stage 1B or more advanced stage 2A/B disease, or those with stage 3-4 disease, should be treated in a similar fashion as those with other forms of indolent CD20+ lymphoma including watchful waiting if asymptomatic or chemoimmunotherapy (eg. BR or RCVP) as appropriate. Consider the possibility of high-grade transformation in patients with rapidly progressive disease, marked B symptoms, focal abnormalities in the spleen, extranodal disease, high LDH, variant histology, or prior bone marrow involvement. R-CHOP is appropriate for patients with transformed disease, with consideration for HDCT/ASCT, especially in those who have relapsed < 2 years after prior chemoimmunotherapy. Consider rituximab monotherapy in patients with advanced stage nodular lymphocyte predominant B-cell lymphoma who have serious co-morbidities that would preclude the use of combination chemotherapy.
References

VI. HDCT and Hematopoietic Stem Cell Transplantation for Lymphoma

For detailed information on hematopoietic stem cell transplantation in patients with hematological malignancies, please refer to the Alberta Bone Marrow and Blood Cell Transplant Standard Practice Manual. This manual was developed and is regularly updated by members of the Alberta Provincial Hematology Tumour Team and the Alberta Bone Marrow and Blood Cell Transplant Program, and can be found at: http://www.albertahealthservices.ca/assets/info/hp/cancer/if-hp-cancer-guide-bmt-manual.pdf

Summary of Recommendations

Eligibility:
- Patient: age ≤ 70 years, ECOG 0-2, adequate organ function, no active infections
 - HIV not contraindication if CD4>100 and meet other eligibility criteria
- Lymphoma: chemosensitive: partial response (PR) or better to last chemotherapy
 - No active secondary CNS disease (eligible if CNS in PR/CR to salvage therapy)

HDCT regimen for autologous stem cell transplantation:
- Indolent (Follicular, SLL/CLL, MZL, LPL) and Mantle Cell: melphalan 180mg/m² + TBI 5Gy
- Aggressive systemic non-Hodgkin lymphoma (DLBCL, PTCL): (R)BEAM or Etoposide/Melphalan
- Hodgkin lymphoma: melphalan 200mg/m² or Etoposide/Melphalan
- Primary CNS lymphoma: thiotepa 600mg/m² + busulfan 9.6mg/kg
- Secondary CNS lymphoma: (R-TBM) thiotepa 500mg/m² + busulfan 9.6mg/kg + melphalan 100mg/m²

HDCT regimen for allogeneic stem cell transplantation:
- Majority of patients: fludarabine 250mg/m² + busulfan 12.8mg/kg, 400cGy TBI + ATG
- Reduced intensity: fludarabine 120mg/m² + melphalan 140mg/m² + ATG
 - co-morbidities (liver, lung, nervous system), prior busulfan, prior ASCT after BEAM or TBI
 - slowly progressive, non-bulky lymphoma

Indications for HDCT and autologous stem cell transplantation:
1. Indolent non-Hodgkin lymphoma
 - Follicular, Marginal Zone, Small Lymphocytic, Lymphoplasmacytic Lymphoma
 - chemosensitive first or second chemotherapy failure
 - Mantle Cell Lymphoma (especially low or low-intermediate risk MIPI score)
 - first partial remission (PR) or first complete remission (CR)
2. Aggressive non-Hodgkin lymphoma
 - Part of first salvage therapy for chemosensitive first relapse or first remission-induction failure
 - Part of initial therapy for high IPI=4-5 risk patients or double hit Lymphoma
o first PR/CR following completion of full induction (i.e. R-CHOP x 6)
o high-dose sequential remission-induction therapy

3. Hodgkin lymphoma
 • First chemotherapy failure (relapse or 1º refractory)

Indications for HDCT and allogeneic stem cell transplantation for lymphoma:

1. Indolent non-Hodgkin lymphoma
 • Follicular, Marginal Zone, Small Lymphocytic/CLL, Lymphoplasmacytic Lymphoma
 o chemosensitive second to fourth chemotherapy failure (last time to progression <2 years), usually after prior autologous SCT.
 • Mantle cell lymphoma
 o first remission for high risk MIPI score, blastoid variant, or heavy blood/marrow involvement
 o chemosensitive first chemotherapy failure

2. Aggressive non-Hodgkin lymphoma
 • Diffuse large B-cell or peripheral T-cell lymphomas
 o chemosensitive relapse following HDCT/ASCT if time to relapse >1 year and aAIPI=0-1
 • Lymphoblastic lymphoma
 o first remission after induction and CNS therapy if prior blood/marrow involvement and high LDH
 o chemosensitive first chemotherapy failure

3. Hodgkin lymphoma
 • Chemosensitive relapse following HDCT/ASCT if time to relapse >1 year

4. Any lymphoma with indication for HDCT/ASCT but unable to collect adequate autograft
References

VII. Supportive Care in the Treatment of Lymphoma

Allopurinol

300mg/d x10-14 days starting 1-3 days prior to cycle 1 chemotherapy for Burkitt or Lymphoblastic lymphoma. This should also be considered for rapidly progressive aggressive bulky lymphomas and in patients with impaired renal function.

Pre-Phase Therapy for DLBCL Patients >60 years of Age

Prednisone 100mg/d x 3-7 days prior to cycle 1 R-CHOP or R-CEOP.

Neutropenia Prevention

Primary or secondary prophylaxis to decrease the risk of febrile neutropenia and maintain chemotherapy dose intensity is indicated when treating with curative intent (e.g. preventing treatment delay/dose reduction). The recommendation for R-CHOP, CODOX-M/IVAC, HyperCVAD, or intensive salvage therapy regimens, with or without rituximab (e.g. DHAP, ICE, GDP, MICE, DICEP), in patients with aggressive Hodgkin or non-Hodgkin lymphoma older than 60 years of age, or poor prognostic factors (high IPI or IPS) is G-CSF 300μg subcutaneous on days 8 and 12 of a 14- or 21-day chemotherapy regimen.

For primary prophylaxis of febrile neutropenic infection for similar indications above or co-morbidities that increase risk of infectious complications such as chronic obstructive pulmonary disease, or secondary prevention after a prior episode of febrile neutropenia:

• G-CSF 300 or 480μg/day starting 3 days after chemotherapy completed until post-nadir ANC>1.0 (usually 7-10 days) (though most patients require only 2-5 days of G-CSF support)
• Must monitor CBC
• The alternative is one dose of pegfilgrastim (Neulasta) 6mg on day 4 (without CBC monitoring, but at a cost of ~$2500/dose)

Erythropoeitin

Erythropoeitin is not recommended because of evidence suggesting increased mortality rates. Consider only for symptomatic anemia patients who cannot receive RBC transfusions (i.e., Jehovah’s Witnesses, prior severe transfusion reactions or severe iron overload).

Antimicrobial Prophylaxis for Immunosuppressive Regimens

• For patients receiving fludarabine, high dose cyclophosphamide, >5 days high dose corticosteroids every 21 days, bortezomib, and bendamustine, and for immune-compromised patients (i.e., HIV,
post-organ transplant or autoimmune disease patients who develop hematologic cancers) use prophylaxis during and for 12 months post-treatment. CD4 count monitoring can be used to help determine if prophylaxis can be stopped earlier (should not be assessed until 3 or 6 months post-treatment). Patients with CD4 count > 200 / µL may have earlier discontinuation of antimicrobial prophylaxis.

- *Pneumocystis jiroveci* pneumonia (PCP) prophylaxis:
 - choice 1: Septra 1 regular strength tab daily
 - choice 2: dapsone 100mg every Monday/Wednesday/Friday (or 50 mg daily)
 - choice 3: pentamadine 300mg inhalation monthly
 - choice 4: atovaquone 1500 mg daily

Shingles prophylaxis: valacyclovir 500mg daily

Immunizations

Patients should be encouraged to keep all immunizations up to date. The reactivation and/or seroreversion of viruses that patients have been previously vaccinated against, such as hepatitis B, is a major cause of morbidity and mortality in patients with hematologic malignancies treated with cytotoxic chemotherapy. Appendix G outlines the general principles and specific immunization schedules for recipients of blood and marrow transplantations. In addition, separate guidelines outlining influenza and pneumococcal immunization recommendations for all patients with cancer can be found at: www.albertahealthservices.ca/cancerguidelines.asp under the “Supportive Care” heading.”

Recombinant adjuvant herpes zoster vaccine is commercially available however cancer patients were excluded in the pivotal phase 3 trials (ZOE-50 and ZOE-70). Studies with use in cancer patients are not yet published, but results suggest that vaccination responses are better for patients not on treatment or given prior to chemotherapy, as opposed to during chemotherapy. Other hematological malignancy patients had better vaccines responses than Non Hodgkin’s Lymphoma and CLL patients for reasons not yet identified. The AHS Hematology group consensus is that the recombinant adjuvant herpes zoster vaccine is not contraindicated in hematology patients. Patients may receive the vaccine if they have adequate immune function to amount a response, and are 6-9 months post Rituximab due to the reduced vaccine responses seen in rituximab-treated patients.

Family members and health care providers in contact with patients who have undergone a transplant should also be strongly encouraged to keep all immunizations up to date.

For patients who have experienced reactivation or seroreversion of hepatitis B virus, prompt administration of nucleoside/nucleotide analogues is essential. Entacavir or tenofovir following R-CVP or R-CHOP chemotherapy for lymphoma is recommended for all patients who have a positive hepatitis B surface antigen test.
References

VIII. Follow-Up Care in the Treatment of Lymphoma

The following late effects should be considered when patients are reviewed during follow-up:

- **Relapse.** Careful attention should be directed to lymph node sites. Routine surveillance CT scans are not indicated. Most relapses have been demonstrated to occur between scheduled clinics visits and tests, and are detected by patients themselves. Highly anxious patients who wish surveillance tests could be considered for occasional CXR and abdominal/pelvic ultrasounds (if thin), especially in the setting of indolent lymphoma and prior retroperitoneal and mesenteric disease.

- **Dental caries.** Neck or oropharyngeal irradiation may cause decreased salivation. Patients should have careful dental care follow-up and should make their dentist aware of the previous irradiation.

- **Hypothyroidism.** After external beam thyroid irradiation to doses sufficient to cure malignant lymphoma, at least 50% of patients will eventually develop hypothyroidism. All patients whose TSH level becomes elevated should be treated with life-long T4 replacement in doses sufficient to suppress TSH levels to low normal.

- **Infertility.** Multi-agent chemotherapy and direct or scatter radiation to gonadal tissue may cause infertility, amenorrhea, or premature menopause. However, with current chemotherapy regimens and radiation fields used, most patients will not develop these problems. All patients should be advised that they may or may not be fertile after treatment. In general, women who continue menstruating are fertile, but men require semen analysis to provide a specific answer.

- **Secondary neoplasms.** Although quite uncommon, certain neoplasms occur with increased frequency in patients who have been treated for lymphoma. These include AML, thyroid, breast, lung, and upper GI carcinoma, melanoma and cervical carcinoma in situ. It is appropriate to screen for these neoplasms by careful history, physical examination, mammography and Pap smears for the rest of the patient’s life because they may have a lengthy induction period. Patients should be counseled about the hazards of smoking and excessive sun exposure, and should be encouraged to perform careful breast and skin examinations on a regular basis.

Table 1 outlines the minimum follow-up tests and examinations that should be performed on all patients after treatment for malignant lymphoma. Visits should be scheduled every 3-4 months for 2 years, then every 6 months up to 3 years, then annually.
Table 1. Minimum follow-up tests and examinations for patients with malignant lymphoma

<table>
<thead>
<tr>
<th>Interval</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every Visit</td>
<td>• Examination of lymph nodes, thyroid, lungs, abdomen, and skin</td>
</tr>
<tr>
<td></td>
<td>• CBC & differential, LDH (consider ESR AlkP for Hodgkin disease)</td>
</tr>
<tr>
<td></td>
<td>• Consider CXR during first 3 years for patients who previously had intrathoracic disease</td>
</tr>
<tr>
<td>Annually</td>
<td>• TSH (if thyroid was irradiated)</td>
</tr>
<tr>
<td></td>
<td>• Mammogram for women after age 40 if irradiated (otherwise age 50)</td>
</tr>
<tr>
<td></td>
<td>• Pap smear</td>
</tr>
<tr>
<td></td>
<td>• Influenza immunization</td>
</tr>
<tr>
<td>Routine Body CT Scanning</td>
<td>• After 3 months of therapy and if abnormal, again after completion of all therapy</td>
</tr>
<tr>
<td></td>
<td>• If a residual mass is seen on the CT after completion of all therapy, then consider a surveillance scan 6 months later. Otherwise, no further routine CT scans are required. PET scans are not performed for surveillance and are indicated only for staging and response assessment.</td>
</tr>
</tbody>
</table>

Data from large studies of patients with DLBCL treated on clinical trials confirm that Event Free Survival (EFS) at 24 months (lack of relapse or death 24 months after diagnosis) is representative of overall EFS because the majority of relapses occur within 12-24 months of diagnosis (ie. within 1 year of completing chemotherapy)\(^\text{12}\). Thus, patients who are disease free 24 months from their diagnosis of aggressive lymphoma have a low risk of recurrence and should have their surveillance follow-ups transitioned back to their primary care physician. Late relapses are more frequent with indolent NHL but early diagnosis of relapsed iNHL is not associated with improved survival such that these patients are also appropriate to have surveillance under primary care. Transition of patients with indolent NHL should occur 12-18 months after completion of therapy for those who remain without evidence of active lymphoma. Detailed discharge and surveillance recommendations should be provided to the primary care team.
References

Appendix A. Information regarding Rituximab 375mg/m2 IV or 1400mg SC for B-cell lymphoma treatment

• Indications:
 - All CD 20+ B cell lymphomas (indolent and aggressive)
 - PTLD and MCL
 - Monotherapy or with chemo
 - Maintenance q2m (MCL) and q3m (indolent and FL)
 - Stem cell mobilization and high dose conditioning regimens for ASCT.
 Not indicated:
 - Not CLL (Health Canada)
 - not for Ritux treatment of autoimmune cytopenias due to CLL or indolent lymphoma (hematoma risk)
• Timing of sc Rituximab relative to IV:
 - all first exposure to rituximab must be IV
 - before commencing SC the patient must have completed a full rituximab IV infusion dose, regardless if the patient had an infusion reaction or the grade of the reaction. (patient does not have to had 0 reaction to IV). If the patient did not complete* the full IV dose, the next rituximab dose must be by IV infusion. (Roche)x
• Pts may start with SC if:
 - going on to maintenance treatment and had SC prior
 - going on to mobilization, high dose chemo and had SC prior
 - undergoing re-treatment (even > 6 months) may start with SC if they had SC prior

I. Initial Therapy For Diffuse Large B-Cell Lymphoma

R-CHOP (standard risk):
• Rituximab 375mg/m2 IV day 1 (premedications: Tylenol, Benadryl, Zantac, hydrocortisone 100mg), then Rituximab 1400mg sc on day 1 from cycle 2 onwards if initial IV dose tolerated well.
• Cyclophosphamide 750 mg/m2 IV
• Adriamycin 50 mg/m2 IV day 1
• Vincristine 2mg IV day 1
• Prednisone 100mg/day p.o. days 1-5
• Cycles: every 21 days

R-CHOEP (high risk, age <60 years)1-3:
• Rituximab 375mg/m2 IV day 1 (premedications: Tylenol, Benadryl, Zantac, hydrocortisone 100mg) then Rituximab 1400mg sc on day 1 from cycle 2 onwards if initial IV dose tolerated well.
• Cyclophosphamide 750 mg/m2 IV
• Adriamycin 50 mg/m² IV day 1
• Vincristine 2mg IV day 1
• Etoposide 100mg/m² IV days 1-3 (or 200mg/m² p.o. days 2-3 instead of IV; round down to nearest 50mg multiple)
• Prednisone 100mg/day p.o. days 1-5
• G-CSF days 7-11 or neulasta day 4 of each cycle
• Cycles: every 14-21 days

R-CEOP (cardiac disease with LVEF <50%)¹⁻³:
• Rituximab 375mg/m² IV day 1 (premedications: Tylenol, Benadryl, Zantac, hydrocortisone 100mg) then Rituximab 1400mg sc on day 1 from cycle 2 onwards if initial IV dose tolerated well.
• Cyclophosphamide 750 mg/m² IV
• Vincristine 2mg IV day 1
• Etoposide 50mg/m² IV days 1-3 (or 100mg/m² p.o. days 2-3 instead of IV; round up to nearest 50mg multiple)
• Prednisone 100mg/day p.o. days 1-5
• Cycles: every 21 days

R-MACOP-B (not recommended unless patient needs to complete therapy in 3 months):
• Methotrexate 400mg/m² IV on weeks 2, 6, 10 (24 hours later: folinic acid 15mg q6 hours x 6 doses)
• Adriamycin 50 mg/m² IV weeks 1,3,5,7,9,11
• Cyclophosphamide 350 mg/m² IV weeks 1,3,5,7,9,11
• Vincristine 2mg IV weeks 2,4,6,8,10,12
• Bleomycin 10mg/m² weeks 4,8,12
• Prednisone 75mg/day p.o. daily, taper over last 15 days
• Septra for PCP prophylaxis
• Suggest adding rituximab 375mg/m² IV q14 days x 6 doses then Rituximab 1400mg sc on day 1 from cycle 2 onwards if initial IV dose tolerated well.

DA-EPOCH-R:
Prednisone is a tablet taken by mouth TWICE daily on Days 1, 2, 3, 4, 5 Rituximab is an intravenous (I.V.) infusion on Day 1 (time of infusion varies) Doxorubicin is an I.V. infusion given over 24 hours on Days 1, 2, 3, 4 Etoposide is an I.V. infusion given over 24 hours on Days 1, 2, 3, 4 Vincristine is an I.V. infusion given over 24 hours on Days 1, 2, 3, 4 Cyclophosphamide is an I.V. infusion given over two hours on Day 5 On Day 6, filgrastim (Neupogen®) is started subcutaneously once daily and continued every day until the white blood cell count returns to normal. Alternatively, some Doctors prefer to give one dose of pegfilgrastim (Neulasta®) after each cycle of dose-adjusted EPOCH-R Patients then have labs drawn twice weekly until the white blood cell count has recovered. Typically, etoposide, doxorubicin, and vincristine are mixed together in one intravenous infusion bag and each bag is infused over 24 hours on Days 1, 2, 3, and 4 of each cycle (96 hours total).
Day 1-4 Doxorubicin 10 mg/m²/day
Vincristine 0.4 mg/m²/day (no cap)
Intravenous infusion in an elastomeric infusor in sodium chloride 0.9% via a central line over 96 hours
Day 1-4 Etoposide 50 mg/m²/day
Intravenous infusion in sodium chloride 0.9% over 24 hours via a central line
Day 5 Ondansetron 8 mg
Oral as a single dose prior to chemotherapy
Day 5 Cyclophosphamide 750 mg/m²
Intravenous bolus
Day 6 GCSF (Biosimilar) 300 micrograms
Subcutaneous injection once daily until neutrophil recovery (supply 7 doses)

Dose Adjustments according to nadir:
Doxorubicin, Etoposide and Cyclophosphamide ONLY.
Doses may be adjusted from Cycle 2 based on the previous cycle’s neutrophil (ANC) nadir. This is monitored by obtaining TWICE WEEKLY CBC, i.e. days 9, 12, 15, 18:
- If nadir ANC ≥0.5x10⁹/l: **increase by 1 dose level**
- If nadir ANC <0.5x10⁹/l on 1 or 2 measurements: **same dose as last**

Cycle.
- If nadir ANC <0.5x10⁹/l on at least 3 measurements: **decrease by 1 dose level**
- If platelet nadir <25x10⁹/l: **reduce by 1 dose level** regardless of ANC
- Life threatening infections: **decrease by 1 dose level**

Drug Dose Adjustments

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Drug Doses per Dose Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>64%</td>
</tr>
<tr>
<td>Prednisolone (mg/m² twice daily)</td>
<td>60</td>
</tr>
<tr>
<td>Rituximab (mg/m²/day)</td>
<td>375</td>
</tr>
<tr>
<td>Doxorubicin (mg/m²/day)</td>
<td>10</td>
</tr>
<tr>
<td>Vincristine (mg/m²/day)</td>
<td>0.4</td>
</tr>
<tr>
<td>Etoposide (mg/m²/day)</td>
<td>50</td>
</tr>
<tr>
<td>Cyclophosphamide (mg/m²/day)</td>
<td>480</td>
</tr>
</tbody>
</table>

Neurotoxicity:
If the patient complains of significant constipation or sensory loss in fingers and/or toes, consider dose reduction of vincristine:
- Reduce by 25% for grade 2 motor neuropathy
Reduce by 50% for grade 3 motor or sensory neuropathy
For patients who develop ≥ grade 3 ileus, treatment should be delayed until recovery and vincristine introduced at 75% of the normal dose thereafter. If ≥ grade 3 ileus recurs, vincristine should be discontinued.

Additional medicines that may be prescribed:

<table>
<thead>
<tr>
<th>Medicine</th>
<th>Dosage</th>
<th>Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Septra</td>
<td>480mg</td>
<td>Oral once daily</td>
</tr>
<tr>
<td>Valacyclovir</td>
<td>500mg</td>
<td>Oral once daily</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>50mg</td>
<td>Oral once daily</td>
</tr>
<tr>
<td>Omeprazole</td>
<td>20mg</td>
<td>Oral once daily for 5 days</td>
</tr>
<tr>
<td>Metoclopramide</td>
<td>10mg</td>
<td>Oral four times daily as needed</td>
</tr>
<tr>
<td>Ondansetron</td>
<td>8mg</td>
<td>Oral as a single dose prior to chemotherapy, then twice daily as needed</td>
</tr>
</tbody>
</table>

Docusate/Senna (Senna-S®) to prevent constipation from vincristine

Consider intrathecal prophylaxis for patients with >1 extranodal site and elevated LDH

II. Initial Therapy For Indolent Histology Non-Hodgkin Lymphoma

B-R:
- Bendamustine 90 mg/m^2 IV day 1, 2
- Rituximab 375 mg/m^2 IV day 1 then Rituximab 1400mg sc on day 1 from cycle 2 onwards if initial IV dose tolerated.
- Cycles: repeated every 3-4 weeks depending on blood counts (usually administered every 28 days) for a maximum of 6 cycles

CVP:
- Cyclophosphamide 800 mg/m^2 IV day 1 (or 400 mg/m^2/day p.o. days 1-5)
- Vincristine 2mg IV day 1
- Prednisone 100mg/day p.o. days 1-5
- Cycles: every 21 days

R-CVP:
- Rituximab 375mg/m^2 IV day 1 (premeds: Tylenol, Benadryl, Zantac, hydrocortisone 100mg), then Rituximab 1400mg sc on day 1 from cycle 2 onwards if initial IV dose tolerated.
- Cyclophosphamide 750 mg/m^2 IV day 1
- Vincristine 2mg IV day 1
- Prednisone 100mg/day p.o. days 1-5
- Cycles: every 21 days
Maintenance Rituximab in First or Second Remission Following Chemotherapy + Rituximab:

- Follicular and other indolent B-cell lymphoma: rituximab 1400mg sc (or 375mg/m² IV if cannot tolerate sc) x 1 dose q3 months x 2 years (8 doses total)
- Mantle cell lymphoma option: rituximab 1400mg sc (or 375mg/m² IV if cannot tolerate sc) q2months until progression

Outpatient R-DHAP:

Cycle 1.
- Day 1: Rituximab 375mg/m² IV (if no rituximab in past 3 months and cannot receive sc rituximab)
- Day 2: 500mL NS pre, cisplatin 35 mg/m² in 500 mL NS/mannitol, 500 ml NS post, AraC 2g/m² in 500 mL NS.
- Day 3: 500mL NS pre, cisplatin 35 mgm² in 500 ml NS/mannitol, AraC 2g/m² in 500 mL NS. Total 5 hrs

Cycle 2 onwards.
- Day 1: Rituximab 1400mg sc, 500mL NS pre, cisplatin 35 mg/m² in 500 mL NS/mannitol, 500 ml NS post. Then AraC 2g/m² in 500 mL NS. Total 5 hrs
- Day 2: 500mL NS pre, cisplatin 35 mgm² in 500 ml NS/mannitol, AraC 2g/m² in 500 mL NS. Total 5 hrs

Chlorambucil (options):

- 0.1-0.2 mg/kg/day for 4-8 weeks then usually reduce for maintenance
- 10-14 mg/m² for 5 to 7 days each 28 days
- 0.5 mg/kg days 1 and 15 q28d cycle

Fludarabine:

- 25mg/m² IV days 1-5 q28 days (days 1-3 only if frail elderly or renal dysfunction)
- 40mg/m² p.o. days 1-5 q28 days (round down to nearest multiple of 10mg) (d1-3 only if frail or renal dysfunction)

FND:

- Fludarabine 25mg/m² IV days 1-3 or 40mg/m² p.o. days 1-3
- Mitoxantrone 10mg/m² day 1
- Dexamethasone 40mg p.o. days 1-3
- Septra for PCP prophylaxis
- **Cycles:** every 28 days
III. Initial Therapy for Peripheral T-Cell Lymphoma

CHOP:
- Cyclophosphamide 750 mg/m² IV
- Adriamycin 50 mg/m² IV day 1
- Vincristine 2mg IV day 1
- Prednisone 100mg/day p.o. days 1-5
- *Cycles:* every 21 days

CHOEP¹-³:
- Cyclophosphamide 750 mg/m² IV
- Adriamycin 50 mg/m² IV day 1
- Vincristine 2mg IV day 1
- Etoposide 100mg/m² IV days 1-3 (or 200mg/m² p.o. days 2-3 instead of IV; round down to nearest 50mg multiple)
- Prednisone 100mg/day p.o. days 1-5
- G-CSF days 7-11 or neulasta day 4 of each cycle
- *Cycles:* every 21 days

VIPD (Nasal NK/T-cell lymphoma):
- Etoposide 100mg/m² days 1-3
- Ifosfamide 1.2g/m² days 1-3
- Cisplatin 33mg/m² days 1-3
- Dexamethasone 40mg days 1-4
- *Cycles:* 3 cycles after initial radiotherapy

GOLD (14 day cycle)⁴:
- Gemcitabine 1000mg/m² on day 1
- Oxaliplatin 100mg/m² on day 1
- L-asparaginase 10,000U/m² on days 1-5*
- Dexamethasone (20mg b.i.d.) on days 1-4
*An intradermal test was required prior to the administration of L-ASP

SMILE (28 day cycle)⁵:
- Methotrexate 2g/m² on day 1
- Leucovorin 15mg x 4 on day 2, 3, and 4
- Ifosfamide 1500mg/m² on day 2, 3, and 4
- Mesna 300 mg/m² x 3 on day 2, 3 and 4
- Dexamethasone 40mg/d on day 2, 3 and 4
• Etoposide 100mg/m^2 on day 2, 3 and 4
• L-asparaginase 6000U/m^2 on day 8, 10, 12, 14, 16, 18 and 20
GCSF should be given from day 6 and discontinued if the leukocyte count exceeds 5000/μL.
Antibiotic prophylaxis with sulfamethoxazole-trimethoprim is recommended.

IV. Hodgkin Disease Chemotherapy Regimens

Initial Therapy:

ABVD adriamycin 25 mg/m^2 IV days 1 and 14
bleomycin 10 mg/m^2 IV days 1 and 14
vinblastine 6 mg/m^2 IV days 1 and 14
dacarbazine 375 mg/m^2 IV days 1 and 14
Cycles: every 28 days

BEACOPP (escalated)
bleomycin 10mg/m^2 IV day 8
etoposide 200mg/m^2 IV days 1-3
adriamycin 35mg/m^2 IV day 1
cyclophosphamide 1250mg/m^2 IV day 1
vincristine 1.4mg/m^2 IV day 8
procarbazine 100mg/m^2 p.o. days 1-7
prednisone 40mg/m^2 po days 1-14
G-CSF 300-480μg sc d9-19 (to ANC>1.5) or Neulasta d9
Cycles: every 21 days

BEACOPP (baseline)
bleomycin 10mg/m^2 IV day 8
etoposide 100 mg/m^2 IV days 1-3
adriamycin 25mg/m^2 IV day 1
cyclophosphamide 650mg/m^2 IV day 1
vincristine 1.4mg/m^2 IV day 8
procarbazine 100mg/m^2 p.o. days 1-7
prednisone 40mg/m^2 p.o. days 1-14

deacarbazine 375 mg/m^2 IV days 1 and 4
Cycles: every 28 days

ChIVPP chlorambucil 6mg/m^2 p.o. days 1-14
vinblastine 6mg/m^2 IV days 1 and 8
procarbazine 100mg/m^2 p.o. days 1-14
prednisone 40mg/m^2 p.o. days 1-14
Cycles: every 28 days

MOPP nitrogen mustard 6mg/m^2 days 1 & 8
vincristine 1.4mg/m^2 IV days 1 & 8
procarbazine 100mg/m^2 po days 1-14
prednisone 40mg/m^2 po days 1-14
Cycles: every 28 days

COPP cyclophosphamide 650mg/m^2 IV days 1&8
vincristine 1.4mg/m^2 IV days 1 & 8
procarbazine 100mg/m^2 po days 1-14
prednisone 40mg/m^2 po days 1-14
Cycles: every 28 days

BEACOPDac (escalated)
bleomycin 10mg/m^2 day 8
etoposide 200mg/m^2 days 1-3
adriamycin 35mg/m^2 day 1
cyclophosphamide 1250 mg/m^2 IV day 1
vincristine 1.4mg/m^2 IV day 8
dacarbazine 250mg/m^2 IV days 2 and 3
prednisone 40 mg/m^2 p.o. days 1-14
G-CSF 300-480μg sc d9-19 (to ANC>1.5) or Neulasta d9
Cycles: every 21 days

V. Lymphoma Salvage Regimens

Aggressive Histology Hodgkin and Non-Hodgkin Lymphomas*:

DICE.
• Dexamethasone 10mg IV q6 hours days 1-4
• Ifosfamide 1g/m^2 (max 1.75g) over 15 minutes days 1-4
• Cisplatin 25mg/m^2 IV over 1 hour days 1-4
• Etoposide 100mg/m^2 over 1 hour days 1-4
• Mesna 200 mg/m\(^2\) over 5-10 min prior to first dose of ifosfamide, then 200 mg/m\(^2\) IV at 4 hours and 400mg/m\(^2\) p.o. (or 200 mg/m\(^2\) IV) at 8 hours post-ifosfamide x 4 days
• Cycles: every 21-28 days

CEPP.

• Cyclophosphamide 600 mg/m\(^2\) IV days 1 and 8
• Etoposide 70mg/m\(^2\) days 1-3
• Procarbazine 60mg/m\(^2\) p.o. days 1-10
• Prednisone 100mg/day p.o. days 1-10
• Cycles: every 28 days

GDP.

• Gemcitabine 1000mg/m\(^2\) IV days 1 and 8
• Dexamethasone 40mg p.o. days 1-4
• Cisplatin 75mg/m\(^2\) IV

DICEP.

• Dexamethasone 10mg IV q8 hours x 10 doses
• Cyclophosphamide 1.75 g/m\(^2\) IV over 2 hours days 1-3
• Etoposide 350mg/m\(^2\) IV over 2 hours days 1-3
• Cisplatin 35mg/m\(^2\) IV over 2 hours days 1-3
• Mesna 1.75g/m\(^2\) IV over 24 hours days 1-3
• Septra for PCP prophylaxis
• Cycles: Once only

Add rituximab to salvage regimens for transplant eligible patients with relapsed B-cell lymphomas

Indolent Histology Non-Hodgkin Lymphoma:

As above, plus:

Rituximab.

• 375mg/m\(^2\) IV days 1,8,15, and 22 (Rituximab 1400mg sc from day 8 onwards if initial IV dose tolerated).
• Pre-medicate with hydrocortisone 100mg IV, Benadryl, Zantac, and Tylenol
• Infuse 50mg/hour initially, then increase by 50mg/hour increments q30 minutes as tolerated to a maximum of 400mg/hour
• Subsequent infusions can begin at 100mg/hour and increase by 100mg/hour increments as tolerated to maximum of 400mg/hour
FND.
- Fludarabine 25mg/m² IV days 1-3 or 40mg/m² p.o. days 1-3
- Mitoxantrone 10mg/m² day 1
- Dexamethasone 40mg p.o. days 1-3
- Septra for PCP prophylaxis
- Cycles: every 28 days

R-FCM.
- Fludarabine 25mg/m² IV days 1-3 or 40mg/m² p.o. days 1-3
- Cyclophosphamide 200mg/m² IV days 1-3
- Mitoxantrone 8mg/m² IV day 1
- Rituximab 375mg/m² IV day 1 (Rituximab 1400mg sc on day 1 from cycle 2 onwards if initial IV dose tolerated).
- Cycles: every 28 days

VI. Burkitt Lymphoma⁶,⁷

Modified Magrath Regimen of R-CODOXM/R-IVAC (Blood 2014; 124:2913-2920)⁸:

Regimen A (R-CODOX-M)

<table>
<thead>
<tr>
<th>Days:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>rituximab 1400mg sc</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>cyclophosphamide 800mg/m² IV</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>doxorubicin 50mg/m² IV</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>vincristine 1.5mg/m² IV cap 2mg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>allopurinol 300mg/day po</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>methotrexate 3000mg/m² IV over 2 hour IV**</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>leucovorin 25mg IV @ 24 hours, then 25mg IV q6h until methotrexate<10⁻⁸ M</td>
<td></td>
</tr>
<tr>
<td>IT methotrexate 12mg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>IT cytarabine 50mg *</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Peg-filgrastim 6mg</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

*if CNS disease, give extra IT AraC 50mg d5 cycle 1 only

**HDMTX administered once urine pH>7, and diuresis established with hydration including D5-0.2%NS plus 2-3 amps sodium bicarbonate. Continue hydration and alkalinization until MTX cleared.

Regimen B (R-IVAC)

<table>
<thead>
<tr>
<th>Days:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>rituximab 375mg/m² IV</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>cytarabine 2g/m² IV q12h x 4 doses</td>
<td>X</td>
<td>XX</td>
<td></td>
</tr>
<tr>
<td>ifosfamide 1500mg/m² IV</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>mesna 360mg/m² IV q3 hours</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
etoposide 60mg/m² IV x x x x x
IT methotrexate 12mg x
Peg-filgrastim 6mg x
*if CNS disease, give extra IT AraC 50mg d3 cycle 1 only

Low risk patients:
- Single extra-abdominal mass <10cm, or completely resected abdominal disease and normal LDH
- Modified regimen A x 3 cycles (cytarabine IT day 1 and methotrexate IT day 3 each cycle)

High risk patients:
- All others
- Alternate regimen A with regimen B for a total of 2 each or 4 cycles total

Start next cycle once ANC>1.0 and platelets>50

VII. Primary CNS Lymphoma Protocol

A. Transplant Protocol for Transplant-Eligible for Patients: age < 75 years, no significant co-morbidities.
All chemotherapy doses based on ideal body weight.

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0800hr - Kytril 1mg IV, Methotrexate 3500mg/m² IV over 2 hour days 1 and 15, Procarbazine 100mg/m² p.o daily x 7 days 1-7 only (round down to nearest 50mg multiple) sodium bicarbonate 50 mmol IVPB q6h if urine pH <7, increase sodium bicarbonate to 6500 mg PO q4h</td>
</tr>
<tr>
<td>2-3</td>
<td>0800hr - Folinic acid 25 mg IV 26 hours until methotrexate level <0.05 Continue hydration until methotrexate level <0.05</td>
</tr>
<tr>
<td>4</td>
<td>0900hr - Rituximab 1400mg sc on cycle 1 only and continue folinic acid</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
<th>Step 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rituximab 375mg/m² IV d0, then 1400mg sc d4 & 14</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>high-dose methotrexate 3.5 g/m² d1 & 15 procarbazine 100 mg/m² d1-7</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>rituximab 1400mg sc d1, cytarabine 3 g/m² x d1 & 2, G-CSF 5-10 µg/kg d8-13, Apheresis -d14 or 15</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Rituximab 1400mg sc d0, high-dose methotrexate 3.5 g/m² d1, cytarabine 2 g/m² twice daily days 2-3 all q21d for 2 cycles thiotepa 300 mg/m² IV days -6, -5</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>busulfan 3.2 mg/kg IV days -4 to -2, ASCT day 0</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

* Step 2 may begin either week 4 or 5 depending upon patient status and apheresis scheduling
**Step 3 may be omitted in patients who have achieved some response and are physically fit to proceed directly to ASCT on week 9.
Step 2. Rituximab/high-dose cytarabine x 1 cycle for stem cell collection after 2 cycles of methotrexate

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0900hr - Premeds: Loratadine 10mg po, Tylenol 650mg p.o. - Rituximab 1400mg sc</td>
<td>• Weight
• CBC & Diff, EP, creatinine, glucose
• ALT,AlkP,LDH,bilirubin,Alb,Ca,Mg</td>
</tr>
<tr>
<td>2 & 3</td>
<td>0800hr – Ondansetron or Granisetron, dexamethasone 10-12mg IV/po 0800hr – IV N/S 500mL/hour x 2 hours 1000hr – Cytarabine 3g/m² IV over 3 hours daily if creat cl >60ml/min or 2g/m² daily if creat cl 46-60ml/min or 1.5g/m² daily if creat cl 31-45ml/min</td>
<td>1% Prednisolone eye drops, 2 tid x12 doses begin before first dose of cytarabine and continue until 48 hours after the last dose</td>
</tr>
<tr>
<td>9-14</td>
<td>1000hr – G-CSF 480-600 µg subcutaneous daily until apheresis completed (plan for apheresis approximately day 13-15, once ANC>5, Plt >75 and CD34>20)</td>
<td>Daily CBC & differential starting day 10</td>
</tr>
</tbody>
</table>

Step 3. High-dose methotrexate/cytarabine consolidation q21 days x 1 cycles after stem cell collection

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0800hr – Kytril 1mg IV 0800hr - methotrexate 3500mg/m² IV over 2 hours</td>
<td>• Daily weights
• Daily CBC & differential, EP, creatinine, glucose
• ALT,AlkP,LDH,bilirubin,Alb,Ca,Mg
• ALT, Alk P, bili, Ca, lipase, every Monday & Thursday</td>
</tr>
<tr>
<td>2-3</td>
<td>0800hr- Folic acid (leucovorin) 25 mg IV q8h 0800hr – Granisetron 2mg IV, dexamethasone 10mg IV 1000hr – Cytarabine 2g/m² IV over 2 hours bid x2 days if CreatCl>60ml/min (reduce to 1.3g/m² if creat cl 46-60ml/min or 1g/m² if creat cl 31-45ml/min)</td>
<td>0500-08:00 – methotrexate level daily (expect <10 d2, <0.1 d3, <0.05 d5) 1% Prednisolone eye drops. 2 tid x12 doses begin before first dose of cytarabine and continue until 48 hours after the last dose</td>
</tr>
<tr>
<td>5</td>
<td>Discharge once methotrexate level <0.05 If level 0.01-0.05, discharge on leucovorin 5mg p.o. q6 hours x 2-3 days (other meds as step 1 above)</td>
<td>Daily CBC & differential starting day 10</td>
</tr>
<tr>
<td>8-12</td>
<td>1000hr – G-CSF 480-600 µg subcutaneous daily until post-nadir ANC >1.5</td>
<td>NB: Step 3 may be omitted in patients who have achieved some response and are physically fit to proceed directly to ASCT on week 9.</td>
</tr>
</tbody>
</table>

Step 4. TBU/ASCT consolidation after response to methotrexate and high-dose cytarabine

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADMISSION Day - 7</td>
<td>Allopurinol 300 mg p.o. daily until day 0 2200hr - N/S @ 100 mL/hour until day -4, then infuse only during busulfan administration days -4 to -2</td>
<td>• Consult dietician, physiotherapy
• Low bacteria diet
• 24 hour intake
• Mouth protocol
• Record intake and output
• Valacyclovir 500mg/d</td>
</tr>
<tr>
<td>-6 & -5</td>
<td>0800 – thiotepa 300 mg/m² IV over 3 hours x 2 days (IDEAL BSA) Reduce to 270mg²/m² if age 61-65years Reduce to 240mg²/m² if age 66-70years Reduce to 210mg²/m² if age >70years</td>
<td>• 0800hr – granisetron 2 mg IV daily x 8 days
• EP daily x 31days
• Shower/bath q6 hours x 3 days; avoid skin creams</td>
</tr>
<tr>
<td>-4 to -2</td>
<td>0900 - busulfan 3.2 mg/kg IV daily x 3 days (ideal weight) Reduce to 2.9mg/kg if age 61-65years Reduce to 2.55mg/kg if age 66-70years Reduce to 2.25mg/kg if age >70years</td>
<td>• Lorazepam 1mg qid prophylaxis x 4 days
• CBC & differential daily x 31 days
• ALT, Alk Phos, bili, alb, Ca, Mg, every Monday & Thursday
• PT, PTT, every Monday</td>
</tr>
</tbody>
</table>

* Male IBW = 50kg + 2.3kg x inches > 5ft, Female IBW = 45.5 kg + 2.3kg x inches> 5ft. Adjusted BW = IBW + [40% x (actual – IBW)]

* Male IBW = 50kg + 2.3kg x inches > 5ft, Female IBW = 45.5 kg + 2.3kg x inches> 5ft. Adjusted BW = IBW + [40% x (actual – IBW)]

NB: Step 3 may be omitted in patients who have achieved some response and are physically fit to proceed directly to ASCT on week 9.
<table>
<thead>
<tr>
<th>Day</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>Rest day</td>
</tr>
<tr>
<td>0</td>
<td>Autologous Blood Stem Cell INFUSION</td>
</tr>
<tr>
<td>+7</td>
<td>G-CSF 300µg (if less than 70kg) or 480µg (if over 70kg) subcutaneous daily until post-nadir ANC > 1.5</td>
</tr>
<tr>
<td>+14</td>
<td>septra RS 1 tab p.o. daily</td>
</tr>
</tbody>
</table>

- mycostatin 500,000 units q2-4 hours
B. MATRIX Non-Transplant Protocol for Transplant-Eligible for Patients who refuse transplant:

- age < 70 years, no significant co-morbidities, ECOG=0-2.
- All chemotherapy doses based on ideal body weight.

Step 1

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Rituximab d0, 4</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>high-dose methotrexate 3.5 g/m² d1</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>cytarabine 2g/ m² q12h x 2 d2</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Thiotepa 30mg/ m² d4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 1. Induction: MATRIX x 4 cycles

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
</table>
| ADMISSION 0 | 0900hr - Rituximab 375mg/m² (1st infusion protocol) 2000hr – IV D5W + 20meq KCL/L + 2amps NaHCO3/L @ 200ml/hour x 5 days | • Daily weights
• Daily CBC & differential, EP, creatinine, glucose
• ALT, AlkP, LDH, bilirubin, Alb, Ca, Mg
• LFTs, Ca, lipase, every Monday & Thursday |
| 1 | 0800hr - Kytril 1mg IV
0800hr - methotrexate 3500mg/m² IV over 3 hours | 0700hr - Urine pH twice daily, call MD if <7.0 |
| 2-3 | 0800hr - folinic acid (leucovorin) 25 mg IV q6hr until MTX level < 0.05
Continue hydration until methotrexate level <0.05
1000hr – Cytarabine 2mg/m² by 1 hour infusion q12 hr x 2
if CreatCl>60ml/min (reduce to 1.3g/m² if creat cl 46-60ml/min or 1g/m² if creat cl 31-45ml/min) | 0500-0800hr – methotrexate level daily (expect level < 10 d2, <1 d3) |
| 4 | 0900hr- Rituximab 1400mg subcutaneously
1000hr- Thiotepa 30mg/m² by 30min infusion | 0500-0800hr – methotrexate Level daily |
| 5 | • Discharge once methotrexate level <0.05
• If level 0.01-0.05, discharge on leucovorin 5mg p.o. q6 hours x 2-3 days
• Discharge meds: septra DS 1 daily or dapsone 50mg daily x 6-9 months; consider dexamethasone taper if on dexamethasone
• Remember coumadin/LMWH and dilantin if patient is on these medications |

Methotrexate should be omitted if creat clearance < 50 mL/min or if renal dysfunction with prior cycle

Cytarabine should be reduced to q24hr if creat clearance < 50 mL/min or complications of myelosuppression

* Male IBW = 50kg + 2.3kg x inches > 5ft, Female IBW = 45.5 kg + 2.3kg x inches> 5ft. Adjusted BW = IBW + [40% x (actual – IBW)]

* Male IBW = 50kg + 2.3kg x inches > 5ft, Female IBW = 45.5 kg + 2.3kg x inches> 5ft. Adjusted BW = IBW + [40% x (actual – IBW)]
C. Transplant-Ineligible Patients: age ≥75 years, or significant co-morbidities, or patient refuses HDMTX.

<table>
<thead>
<tr>
<th>Week</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Rituximab 375mg/m² day 0</td>
<td></td>
</tr>
<tr>
<td>Cytarabine 3g/m² daily days 1&2 if creat cl >60ml/min</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>or 2g/m² days 1&2 if creat cl 46-60ml/min</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>or 1.5g/m² days 1&2 if creat cl 31-45ml/min</td>
<td></td>
</tr>
<tr>
<td>Thiotepa 30mg/m² on day 2</td>
<td></td>
</tr>
<tr>
<td>Rituximab 1400mg sc day 1</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytarabine 3g/m² daily days 1&2 if creat cl >60ml/min</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or 2g/m² days 1&2 if creat cl 46-60ml/min</td>
<td></td>
</tr>
<tr>
<td>or 1.5g/m² days 1&2 if creat cl 31-45ml/min</td>
<td></td>
</tr>
<tr>
<td>Thiotepa 30mg/m² on day 2</td>
<td></td>
</tr>
</tbody>
</table>

Step 1. Induction: Rituximab high-dose cytarabine/thiotepa x 1 cycle

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 or 1</td>
<td>0900hr-Hydrocortisone 100mg IV, Benadryl 50mg IV, Zantac 50mg IV, Tylenol 650mg, 0900hr-Rituximab 375mg/m² (1st infusion protocol)</td>
<td>Weekly CBC & differential, EP, creatinine, glucose ALT,AlkP,LDH,bilirubin,Alb,Ca,Mg</td>
</tr>
<tr>
<td>1</td>
<td>NS 1000ml IV hydration</td>
<td>1% Prednisolone eye drops, 2 tid x12 doses begin before first dose of cytarabine and continue until 48 hours after the last dose</td>
</tr>
<tr>
<td>2</td>
<td>NS 1000ml IV hydration</td>
<td>1% Prednisolone eye drops, 2 tid x12 doses begin before first dose of cytarabine and continue until 48 hours after the last dose</td>
</tr>
<tr>
<td>7</td>
<td>Valtrix 500mg po daily and Septra 1 tab daily x6mo</td>
<td></td>
</tr>
<tr>
<td>8-12</td>
<td>G-CSF 300 or 480μg sc daily x5d (or pegfilgrastim 6mg on day 4)</td>
<td></td>
</tr>
</tbody>
</table>

Step 2. Rituximab High-dose Cytarabine/Thiotepa q21days x 3 cycles

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rituximab 1400mg sc NS 1000ml IV hydration</td>
<td>Weekly CBC & differential, EP, creatinine, glucose ALT,AlkP,LDH,bilirubin,Alb,Ca,Mg</td>
</tr>
<tr>
<td>2</td>
<td>NS 1000ml IV hydration</td>
<td>1% Prednisolone eye drops, 2 tid x12 doses begin before first dose of cytarabine and continue until 48 hours after the last dose</td>
</tr>
<tr>
<td>8-12</td>
<td>G-CSF 300 or 480μg sc daily x5d (or pegfilgrastim 6mg on day 4)</td>
<td></td>
</tr>
</tbody>
</table>

*If creat cl <30ml/min do not give cytarabine.

Calculated creatinine clearance= N * (140-Age) x weight (kg)/serum create in umol/L where *N = 1.23 males or 1.04 females
VIII. Secondary CNS Lymphoma Protocol

A) Transplant-eligible patients (age <65 years, no significant co-morbidities, no immune suppression) with isolated CNS relapse/progression following complete response of systemic lymphoma to RCHOP.

Step 1. Induction: high-dose methotrexate/vincristine/procarbazine q14 days x 4 cycles

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
</table>
| ADMISSION 0 | 2000hr - IV D5W + 20meq KCL/L + 2 amps NaHCO3/L @ 200mL/hour x 5 days | • Daily weights
• Daily CBC & differential, EP, creatinine, glucose
• ALT,AlkP,LDH, bilirubin, Alb, Ca, Mg
• LFTs, Ca, lipase, every Monday & Thursday |
| 1 | 0800hr - Kytril 1mg IV
0800hr - methotrexate 3500mg/m² IV over 2 hours cycles 1-4
0800hr - procarbazine 100mg/m² p.o. daily x 7 days cycles 1 and 3 (round down to nearest 50mg multiple)
1000hr - vincristine 1.4mg/m² IV only cycles 1 and 2 | 0700hr - Urine pH twice daily, call MD if <7.0
Continue hydration until methotrexate level <0.05
0500-0800hr – Rituximab 375mg/m² IV (first 3 cycles HDMTX) |
| 2-4 | 0800hr - folinic acid (leucovorin) 25 mg IV q6 hours until methotrexate level <0.05
Continue hydration until methotrexate level <0.05
1000hr – Rituximab 375mg/m² IV (first 3 cycles HDMTX) | | 0500-0800hr – methotrexate level daily (expect level < 10 today) |
| 5 | • Discharge once methotrexate level <0.05
• If level 0.01-0.05, discharge on leucovorin 5mg p.o. q6 hours x 2-3 days
• Discharge meds: septran DS 1 daily or dapsone 50mg daily x 6-9 months; consider dexamethasone taper if on dexamethasone
• Remember coumadin/LMWH and dilantin if patient is on these medications | |

Step 2. Rituximab/DHAP x 1 cycle for stem cell collection after 4 cycles of methotrexate

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
</table>
| 1 | 0800hr - hydrocortisone 100mg IV, Benadryl , Zantac, Tylenol
0900hr - rituximab 1400mg sc
0900hr - IV 1L NS | • Weight
• CBC & differential, EP, creatinine, glucose |
Step 2. Rituximab/DHAP x 1 cycle for stem cell collection after 4 cycles of methotrexate

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0900hr – dexamethasone 20mg p.o./IV daily x 4 days</td>
<td>• ALT, AlkP, LDH, bilirubin, Alb, Ca, Mg</td>
</tr>
<tr>
<td></td>
<td>0900hr – Kyrtil 1mg IV or 2mg p.o. x 3-4 days</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0900hr – aprepitent protocol p.o. x 3 days</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000hr – cisplatin 35mg/m² IV over 2 hours with mannitol 25g and 500mL NS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1200hr – cytarabine 2g/m² IV over 2 hours x 1 doses (1.5g/m² if >60yr)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0800hr – dexamethasone Kytril, Aprepitent continued</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000hr – cisplatin 35mg/m² IV over 2 hours with mannitol 25g and 500mL NS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1200hr – cytarabine 2g/m² IV over 2 hours x 1 doses (1.5g/m² if >60yr)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Rituximab 1400mg sc</td>
<td></td>
</tr>
<tr>
<td>8-13</td>
<td>1000hr – G-CSF 480-600µg subcutaneous daily until apheresis completed (plan for apheresis approximately day 13-15, once ANC>5, Plt >75 and CD34>20)</td>
<td>Daily CBC & differential starting day 10</td>
</tr>
</tbody>
</table>
Step 3. R-TBuM/ASCT consolidation after response to MTX and RDHAP Induction

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
</table>
| ADMISSION Day -7 | Allopurinol 300 mg p.o. daily until day 0
Premeds: Hydrocortisone 100mg IV, Benadryl 50mg IV,
Zantac 50mg IV, Tylenol 650mg p.o.
-rituximab 375mg/m² IV (first dose long infusion protocol)
2200hr - D5½ N/S + 20 mEq KCL/L @ 125 mL/hour until day -1 | • Consult dietician, physiotherapy
• Low bacteria diet. 24hour intake
• Mouth protocol; record intake and output |
| -6 & -5 | 0800hr – thiotepa 250 mg/m² IV over 2 hours x 2 days (use ideal BSA) | 0800hr – Granisetron 2 mg IV daily x 8 days
EP daily x 31days
Shower/Bath q6 hours x 3 days; avoid skin creams |
| -4 to -2 | 0900 - busulfan 3.2 mg/kg IV daily x 3 days (use ideal weight) | lorazepam prophylaxis x 4 days
ALT, Alk Phos, bilirubin, alb, Ca, Mg, every Monday & Thursday
PT, PTT every Monday |
| -1 | 10:00 - melphalan 100mg/m² (actual BSA) IV over 5 minutes
10:15 – Lasix 20mg IV
10:30 - mannitol 20% 250 mL IVPB over 1 hour
11:30 - IV 1L NS @ 500 mL/hour for 3 hours
14:30 - IV 1L NS with 40 mEq KCL/L @ 125 mL/hour x 18 hours | Mycostatin 500,000 units q2-4 hours
Septra RS 1 tab p.o. daily
Acyclovir 5 mg/kg twice daily IV or 400 mg p.o. four times daily |
| 0 | Autologous Blood Stem Cell INFUSION | |
| +7 | G-CSF 300 µg (if less than 70kg) or 480µg (if over 70kg) subcutaneous daily until post-nadir ANC > 1.5 | |

B) Transplant-eligible patients (age <65 years, no significant co-morbidities, no immune suppression) with early Systemic and CNS lymphoma (prior to completing RCHOP x6): RCHOP and HDMTX x4 cycles then RDHAP for stem cell mobilization and collection, then R-TBuM/ASCT.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Methotrexate 3.5 g/m² q14d</td>
<td>X**</td>
<td>X</td>
</tr>
<tr>
<td>R-CHOP</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>rituximab 1400mg sc days 1,4 dexamethasone 20 mg days 1-4 cisplatin 35 mg/m² days 1,2 cytarabine 2 g/m² x1 dose, days 1,2 G-CSF 5-10 µg/kg day 8-13 Apheresis day 13 or 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-TbuM/ ASCT (ritux d-7, thiotepa 250mg/m² d-6,-5 busulfan 3.2 mg/kg day -4 to -2, melphalan 100 mg/m² d -1, ASCT d 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*HDMTX prior to RCHOP#1 if CNS and systemic lymphoma both identified at time of initial diagnosis.
**If CNS lymphoma identified after RCHOP initiated but systemic disease responding to RCHOP, then plan for at least 4 doses HDMTX q14d with subsequent cycles RCHOP before proceeding to R-DHAP.

* Male IBW = 50kg + 2.3kg x inches > 5ft, Female IBW = 45.5 kg + 2.3kg x inches > 5ft.
Step 1. Induction: RCHOP q21d as well as high-dose methotrexate q14 days x 4 cycles

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications (HDMTX component)</th>
<th>Other Orders</th>
</tr>
</thead>
</table>
| ADMISSION 0 | 2000hr - IV D5W + 20meq KCL/L + 2 amps NaHCO3/L @ 200mL/hour x 5 days | • Daily weights
• Daily CBC & differential, EP, creatinine, glucose
• ALT, AlkP, LDH, bilirubin, Alb, Ca, Mg
• LFTs, Ca, lipase, every Monday & Thursday |
| 1 | 0800hr - Kytril 1mg IV
0800hr - methotrexate 3500mg/m² IV over 2 hours cycles 1-4 | 0700hr - Urine pH twice daily, call MD if <7.0 |
| 2-4 | 0800hr - folinic acid (leucovorin) 25 mg IV q6 hours until methotrexate level < 0.05
Continue hydration until methotrexate level <0.05 | 0500-0800hr – methotrexate level daily (expect level < 10 today) |
| 5 | • Discharge once methotrexate level <0.05
• If level 0.01-0.05, discharge on leucovorin 5mg p.o. q6 hours x 2-3 days
• Discharge meds: septra DS 1 daily or dapsone 50mg daily x 6-9 months; consider dexamethasone taper if on dexamethasone
• Remember coumadin/LMWH and dilantin if patient is on these medications | |

Step 2. Rituximab/DHAP x 1 cycle for stem cell collection after 4 cycles of methotrexate

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
</table>
| 1 | 0800hr - hydrocortisone 100mg IV, Benadryl, Zantac, Tylenol
0900hr - rituximab 1400mg sc
0900hr - IV 1L NS
0900hr – dexamethasone 20mg p.o./IV daily x 4 days
0900hr – Kyrtil 1mg IV or 2mg p.o. x 3-4 days
0900hr – aprepitent protocol p.o. x 3 days
1000hr – cisplatin 35mg/m² IV over 2 hours with mannitol 25g and 500mL NS
1200hr- cytarabine 2g/m² IV over 2 hours x 1 doses (1.5g/m² if >60yr) | • Weight
• CBC & differential, EP, creatinine, glucose
• ALT, AlkP, LDH, bilirubin, Alb, Ca, Mg |
| 2 | 0800hr – dexamethasone Kytril, Aprepitent continued
1000hr – cisplatin 35mg/m² IV over 2 hours with mannitol 25g and 500mL NS
1200hr- cytarabine 2g/m² IV over 2 hours x 1 doses (1.5g/m² if >60yr) | |
| 4 | Rituximab 1400mg sc | |
| 8-13 | 1000hr – G-CSF 480-600μg subcutaneous daily until apheresis completed (plan for apheresis approximately day 13-15, once ANC>5, Plt >75 and CD34>20) | Daily CBC & differential starting day 10 |
Step 3. R-TBuM/ASCT consolidation after response to MTX and RDHAP Induction

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADMISSION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day -7</td>
<td>Allopurinol 300 mg p.o. daily until day 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Premeds: Hydrocortisone 100mg IV, Benadryl 50mg IV, Zantac 50mg IV, Tylenol 650mg p.o.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rituximab 375mg/m² IV (first dose long infusion protocol)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2200hr - D5½ N/S + 20 mEq KCL/L @ 125 mL/hour until day -1</td>
<td></td>
</tr>
<tr>
<td>-6 & -5</td>
<td>0800hr – thiotepa 250 mg/m² IV over 2 hours x 2 days (use ideal BSA)</td>
<td></td>
</tr>
<tr>
<td>-4 to -2</td>
<td>0900 - busulfan 3.2 mg/kg IV daily x 3 days (use Ideal weight)</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>10:00 - melphalan 100mg/m² (actual BSA) IV over 5 minutes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:15 – Lasix 20mg IV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:30 - mannitol 20% 250 mL IVPB over 1 hour</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11:30 - IV 1L NS @ 500 mL/hour for 3 hours</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14:30 - IV 1L NS with 40 mEq KCL/L @ 125 mL/hour x 18 hours</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Autologous Blood Stem Cell INFUSION</td>
<td></td>
</tr>
<tr>
<td>+7</td>
<td>G-CSF 300 µg (if less than 70kg) or 480µg (if over 70kg) subcutaneous daily until post-nadir ANC > 1.5</td>
<td></td>
</tr>
</tbody>
</table>

C) Transplant-eligible patients (age <65 years, no significant co-morbidities, no immune suppression) with late relapse (prior RCHOP x6) with systemic and CNS lymphoma: HDMTX-Ifosfamide-etopside x2 then RDHAP for stem cell mobilization and collection, then R-TBuM/ASCT

<table>
<thead>
<tr>
<th>Week</th>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3</td>
<td>4 5 6</td>
<td>7 8 9</td>
</tr>
<tr>
<td>high-dose methotrexate 3.5 g/m² d1</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rituximab 375 mg/m² d2</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ifosfamide 1.5 g/m² d3-5</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Etoposide 100 mg/m² d3-5</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>rituximab 1400mg sc days 1,4</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>dexamethasone 20 mg days 1-4</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>cisplatin 35 mg/m² days 1,2</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>cytarabine 2 g/m² x1 dose, days 1,2</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>G-CSF 5-10 µg/kg day 8-13</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Apheresis day 13 or 14</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>R-TBuM/ ASCT (ritux d-7 + thiotepa 250mg/m² d -6-.5</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>busulfan 3.2 mg/kg day -4 to -2,</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>melphalan 100 mg/m² d-1, ASCT d 0</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Step 1. Induction: R-IE and high-dose methotrexate x 2 cycles (HDMTX x3)
Step 2. Rituximab/DHAP x 1 cycle for stem cell collection after 4 cycles of methotrexate

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0800hr - hydrocortisone 100mg IV, Benadryl, Zantac, Tylenol 0900hr - rituximab 1400mg sc 0900hr - IV 1L NS 0900hr – dexamethasone 20mg p.o./IV daily x 4 days 0900hr – Kytril 1mg IV or 2mg p.o. x 3-4 days 0900hr – aprepitent protocol p.o. x 3 days 1000hr - cytarabine 35mg/m² IV over 2 hours with mannitol 25g and 500mL NS 1200hr- cytarabine 2g/m² IV over 2 hours x 1 doses (1.5g/m² if >60yr)</td>
<td>- Weight - CBC & differential, EP, creatinine, glucose - ALT,AlkP,LDH,bilirubin,Alb,Ca,Mg</td>
</tr>
<tr>
<td>2</td>
<td>0800hr – dexamethasone Kytril, Aprepitent continued 1000hr – cisplatin 35mg/m² IV over 2 hours with mannitol 25g and 500mL NS 1200hr- cytarabine 2g/m² IV over 2 hours x 1 doses (1.5g/m² if >60yr)</td>
<td>- Weight - CBC & differential, EP, creatinine, glucose - ALT,AlkP,LDH,bilirubin,Alb,Ca,Mg</td>
</tr>
<tr>
<td>4</td>
<td>Rituximab 1400mg sc</td>
<td>- Weight - CBC & differential, EP, creatinine, glucose - ALT,AlkP,LDH,bilirubin,Alb,Ca,Mg</td>
</tr>
<tr>
<td>8-13</td>
<td>1000hr – G-CSF 480-600μg subcutaneous daily until apheresis completed (plan for apheresis approximately day 13-15, once ANC>5, Plt >75 and CD34>20)</td>
<td>Daily CBC & differential starting day 10</td>
</tr>
</tbody>
</table>
Step 3. R-TBuM/ASCT consolidation after response to MTX and RDHAP Induction

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
</table>
| ADMISSION Day -7 | Allopurinol 300 mg p.o. daily until day 0 Premeds: Hydrocortisone 100mg IV, Benadryl 50mg IV, Zantac 50mg IV, Tylenol 650mg p.o. *rituximab* 375mg/m² IV (first dose long infusion protocol) 2200hr - D5½ N/S + 20 mEq KCL/L @ 125 mL/hour until day -1 | • Consult dietician, physiotherapy
• Low bacteria diet, 24hour intake
• Mouth protocol; record intake and output |
| -6 & -5 | **0800hr – thiotepa** 250 mg/m² IV over 2 hours x 2 days (use ideal BSA) | • 0800hr – Granisetron 2 mg IV daily x 8 days
• EP daily x 31days
• Shower/Bath q6 hours x 3 days; avoid skin creams |
| -4 to -2 | **0900 - busulfan** 3.2 mg/kg IV daily x 3 days (use Ideal weight) | • Lorazepam prophylaxis x 4 days
• CBC & differential daily x 31 days
• ALT, Alk Phos, bilirubin, alb, Ca, Mg, every Monday & Thursday
• PT, PTT every Monday |
| -1 | **10:00 -melphalan** 100mg/m² (actual BSA) IV over 5 minutes
10:15 – Lasix 20mg IV
10:30 - mannitol 20% 250 mL IVPB over 1 hour
11:30 - IV 1L NS @ 500 mL/hour for 3 hours
14:30 -IV 1L NS with 40 mEq KCL/L @ 125 mL/hour x 18 hours | • Mycostatin 500,000 units q2-4 hours
• Septra RS 1 tab p.o. daily
• Acyclovir 5 mg/kg twice daily IV or 400 mg p.o. four times daily |
| 0 | Autologous Blood Stem Cell INFUSION | |
| +7 | G-CSF 300 µg (if less than 70kg) or 480µg (if over 70kg) subcutaneous daily until post-nadir ANC > 1.5 | |
VIII. Secondary CNS Lymphoma Protocol

D) Transplant-ineligible patients (age >65 years, significant co-morbidities, or immune suppression) with isolated CNS relapse/progression following complete response of systemic lymphoma to RCHOP. (consider only for highly motivated patients who wish curative intent therapy. Otherwise palliation with IT chemotherapy, radiotherapy, or supportive care).

<table>
<thead>
<tr>
<th>Week</th>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rituximab 375mg/m² d0, 4</td>
<td>high-dose methotrexate 3.5 g/m² d1</td>
<td>procarbazine 100 mg/m² x 7 days d1-7</td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Rituximab 375mg/m² d0</td>
<td>high-dose methotrexate 3.5 g/m² day 1</td>
<td>cytarabine 1.5-2 g/m² bid days 2-3</td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Ifosfamide 2g/m² daily days 1-3</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Step 1. Induction: high-dose methotrexate/procarbazine x 1 cycle

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
</table>
| ADMISSION 0 | 0900hr-Rituximab 375mg/m² (1st infusion protocol) 2000hr – IV D5W + 20meq KCL/L + 2 amps NaHCO3/L @ 200ml/hour x 5 days | • Daily weights
• Daily CBC & differential, EP, creatinine, glucose
• ALT,AlkP,LDH,bilirubin,Alb,Ca,Mg
• LFTs, Ca, lipase, every Monday & Thursday |
| 1 | 0800hr - Kytril 1mg IV 0800hr - **methotrexate** 3500mg/m² IV over 2 hours 0800hr - **procarbazine** 100mg/m² p.o. daily x 7days only cycle 1 (round down to nearest 50mg multiple) | 0700hr - Urine pH twice daily, call MD if <7.0 |
| 2-3 | 0800hr - folic acid (leucovorin) 25 mg IV q6hr until MTX level < 0.05 Continue hydration until methotrexate level <0.05 | 0500-0800hr – methotrexate level daily (expect level < 10 d2, <1 d3) |
| 4 | 0900hr- Rituximab 375mg/m2 (subsequent infusion protocol)on cycle 1 only and continue folic acid) | 0500-0800hr – methotrexate Level daily |
| 5 | • Discharge once methotrexate level <0.05
• If level 0.01-0.05, discharge on leucovorin 5mg p.o. q6 hours x 2-3 days
• Discharge meds: septra DS 1 daily or dapsone 50mg daily x 6-9 months; consider dexamethasone taper if on dexamethasone
• Remember coumadin/LMWH and dilantin if patient is on these medications | |

* Male IBW = 50kg + 2.3kg x inches > 5ft, Female IBW = 45.5 kg + 2.3kg x inches > 5ft. Adjusted BW = IBW + [40% x (actual – IBW)]
Step 2. High-dose methotrexate/cytarabine consolidation q21 days x 4 cycles

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ADMISSION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1600hr - Rituximab 375mg/m² (subsequent infusion protocol)on cycle 1 only</td>
<td>• Daily weights</td>
</tr>
<tr>
<td></td>
<td>and continue folinic acid 2000hr – IV D5W + 20meq KCL/L + 2 amps NaHCO3/L @</td>
<td>• Daily CBC & differential, EP, creatinine, glucose</td>
</tr>
<tr>
<td></td>
<td>200mL/hour x 5 days</td>
<td>• ALT, AlkP, LDH, bilirubin, Alb, Ca, Mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ALT, Alk P, bilirubin, Ca, lipase, every Monday & Thursday</td>
</tr>
<tr>
<td>1</td>
<td>0800hr - Kytril 1mg IV</td>
<td>07:00 - Urine pH bid, call MD if <7.0</td>
</tr>
<tr>
<td>2-3</td>
<td>0800hr - methotrexate 3500mg/m² IV over 2 hours</td>
<td>0500-08:00 – Methotrexate Level daily (expect <10 d2, <1 d3, <0.1 d4, <0.05 d5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Discharge once methotrexate level <0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If level 0.01-0.05, discharge on leucovorin 5mg p.o. q6 hours x 2-3 days</td>
<td></td>
</tr>
<tr>
<td>8-12</td>
<td>10:00 – G-CSF 480-600 μg subcutaneous daily until post-nadir ANC >1.5</td>
<td>Daily CBC & diff starting d10</td>
</tr>
</tbody>
</table>

* Male IBW = 50kg + 2.3kg x inches > 5ft, Female IBW = 45.5 kg + 2.3kg x inches> 5ft. Adjusted BW = IBW + [40% x (actual – IBW)]

Step 3. Ifosfamide consolidation after response to methotrexate and high-dose cytarabine

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 or 16</td>
<td>0800hr – Kytril 2mg IV</td>
<td>• weight (call MD if >2kg above day 1)</td>
</tr>
<tr>
<td></td>
<td>0800hr – N/S IV 500mL/hour x 1 hour daily x 3d</td>
<td>• CBC & differential, EP, creatinine, glucose</td>
</tr>
<tr>
<td></td>
<td>0900hr – Mesna 1.0g IV daily x 3d</td>
<td>• ALT, AlkP, LDH, bilirubin, Alb, Ca, Mg</td>
</tr>
<tr>
<td></td>
<td>0900hr – Ifosfamide 2g/m² with 1g Mesna IV over 3 hours daily x 3d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1200hr – Mesna 0.5 g IV daily x 3d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1200hr – 1/2NS IV 250mL/hour x 4 hours daily x 3d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1600hr – Mesna 1.0 g IV daily x 3d</td>
<td></td>
</tr>
</tbody>
</table>
E) Transplant-ineligible patients (age >65 years, significant co-morbidities, or immune suppression) with early Systemic and CNS lymphoma prior to completing initial RCHOP x6. (consider only for highly motivated patients who wish curative intent therapy. Otherwise palliation).

<table>
<thead>
<tr>
<th>Week</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methotrexate 3.5 g/m² q14d</td>
<td>X*</td>
<td>X*</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>R-CHOP</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>rituximab 1400mg sc days 1,4</td>
<td></td>
</tr>
<tr>
<td>dexamethasone 20 mg days 1-4</td>
<td></td>
</tr>
<tr>
<td>cytarabine 2 g/m² x1 dose, days 1 and 2</td>
<td></td>
</tr>
<tr>
<td>G-CSF 5-10 µg/kg day 8-13</td>
<td></td>
</tr>
<tr>
<td>Ifosfamide 2g/m² daily days 1-3</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

*HDMTX prior to RCHOP#1 if CNS and systemic lymphoma both identified at time of initial diagnosis.
**If CNS lymphoma identified after RCHOP initiated but systemic disease responding to RCHOP, then plan for at least 4 doses HDMTX q14d with subsequent cycles RCHOP before proceeding to R-AraC.

* Male IBW = 50kg + 2.3kg x inches > 5ft, Female IBW = 45.5 kg + 2.3kg x inches> 5ft.

Step 1. Induction: RCHOP q21d as well as high-dose methotrexate q14d x 4 cycles

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications (HDMTX component)</th>
<th>Other Orders</th>
</tr>
</thead>
</table>
| ADMISSION 0 | 2000hr - IV D5W + 20meq KCL/L + 2 amps NaHCO3/L @ 200mL/hour x 5 days | • Daily weights
 • Daily CBC & differential, EP, creatinine, gluc
 • ALT,AlkP,LDH,bilirubin,Alb,Ca,Mg
 • LFTs, Ca, lipase, every Monday & Thursday |
| 1 | 0800hr - Kytril 1mg IV
 0800hr - methotrexate 3500mg/m² IV over 2 hours cycles 1-4 | 0700hr - Urine pH twice daily, call MD if <7.0 |
| 2-4 | 0800hr- folinic acid (leucovorin) 25 mg IV q6 hours until methotrexate level < 0.05
 Continue hydration until methotrexate level <0.05 | 0500-0800hr – methotrexate level daily
 (expect level < 10 today) |
| 5 | • Discharge once methotrexate level <0.05
 • If level 0.01-0.05, discharge on leucovorin 5mg p.o. q6 hours x 2-3 days
 • Discharge meds: septran DS 1 daily or dapsone 50mg daily x 6-9 months; consider dexamethasone taper if on dexamethasone
 • Remember coumadin/LMWH and dilantin if patient is on these medications | |

www.ahs.ca/guru
Step 2. Rituximab/DHAP x 1 cycle for stem cell collection after 4 cycles of methotrexate

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0800hr - hydrocortisone 100mg IV, Benadryl, Zantac, Tylenol 0900hr - rituximab 1400mg sc 0900hr - IV 1L NS 0900hr – dexamethasone 20mg p.o./IV daily x 4 days 0900hr – Kytril 1mg IV or 2mg p.o. x 3-4 days 0900hr – aprepitant protocol p.o. x 3 days 1000hr – cisplatin 35mg/m² IV over 2 hours with mannitol 25g and 500mL NS 1200hr- cytarabine 2g/m² IV over 2 hours x 1 doses (1.5g/m² if >60yr)</td>
<td>• Weight • CBC & differential, EP, creatinine, glucose • ALT,AlkP,LDH,bilirubin,Alb,Ca,Mg</td>
</tr>
<tr>
<td>2</td>
<td>0800hr – dexamethasone Kytril, Aprepitent continued 1000hr – cisplatin 35mg/m² IV over 2 hours with mannitol 25g and 500mL NS 1200hr- cytarabine 2g/m² IV over 2 hours x 1 doses (1.5g/m² if >60yr)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Rituximab 1400mg sc</td>
<td></td>
</tr>
<tr>
<td>8-13</td>
<td>1000hr – G-CSF 480-600µg subcutaneous daily until apheresis completed (plan for apheresis approximately day 13-15, once ANC>5, Plt >75 and CD34>20)</td>
<td>Daily CBC & differential starting day 10</td>
</tr>
</tbody>
</table>

Step 3. Ifosfamide consolidation after response to methotrexate and high-dose cytarabine

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 or 16</td>
<td>0800hr – Kytril 2mg IV, dexamethasone 10mg IV daily x 3d 0800hr – N/S IV 500mL/hour x 1 hour daily x 3d 0900hr – Mesna 1.0 g IV daily x 3d 0900hr – Ifosfamide 2g/m² with 1g Mesna IV over 3 hours daily x 3d 1200hr – Mesna 0.5 g IV daily x 3d 1200hr – 1/2NS IV 250mL/hour x 4 hours daily x 3d 1600hr – Mesna 1.0 g IV daily x 3d</td>
<td>• weight (call MD if >2kg above day 1) • CBC & differential, EP, creatinine, glucose • ALT,AlkP,LDH,bilirubin,Alb,Ca,Mg</td>
</tr>
</tbody>
</table>

F) Transplant-ineligible patients (age >65 years, significant co-morbidities, or immune suppression) with late relapse (prior RCHOP x6) with relapsed systemic and CNS lymphoma.

This situation is unfortunately associated with extremely poor prognosis, and generally should be treated with palliative intent. Treatments could include IT chemotherapy, radiotherapy, decadron, or best supportive care.
Appendix B: General Radiotherapy Guidelines

Aggressive Non-Hodgkin Lymphomas:

30Gy/15-35Gy/20 is recommended in lymphoma subtypes and situations except:
1. Nasal NK/T cell lymphomas: 30Gy/10 or 40-50Gy +/- concurrent cisplatin
3. Primary or secondary CNS lymphoma: Whole brain radiotherapy
 o Palliative: 20Gy/5 - 35Gy/20 +/- 10Gy/5 boost depending on age, KPS, anticipated life expectancy, status of extracranial disease?
 o Curative, post-methotrexate: 23.4Gy/13 fractions if in CR, or 45Gy/25 fractions (alternative 30Gy/15 + boost 15Gy/8 or 35 Gy/20 + boost 10 Gy/5?)in PR

Indolent Lymphoma:

24Gy/12 - 30Gy/20 fractions is generally recommended for most subtypes and situations except:
1. Palliation: lower doses may be used for palliation such as 4Gy/2 fractions
2. Contiguous stage II disease, curative intent: higher doses up to 40Gy may be used
3. Gastric MALT 30Gy/20

Hodgkin Lymphoma:

20Gy/10 for early stage favorable, 30Gy/15 early stage unfavorable and advanced stage is recommended in lymphoma subtypes and situations except for nodular lymphocyte-predominant Hodgkin disease (NLPHD):
 o IFRT alone to 30Gy/15-35Gy/20 fractions

What is INRT/ISRT?9-11:
- definitions are per ILROG guidelines and depends of whether radiation is sole treatment or part of combined modality regimen

Role of IMRT/VMAT/TOMO12,13:
- role of IMRT/VMAT/TOMO over 3DCRT is at discretion of treating radiation oncologist- this is determined on a case by case basis
- the low dose bath is a consideration when using IMRT as it relates to potential long term risk of second malignancies

Role of PET in Planning14-17:
- this is outlined in the ILROG guidelines for HL, nodal HL and extranodal HL
Appendix C: Prognostic Models

ECOG Performance Status

<table>
<thead>
<tr>
<th>ECOG</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Fully active, able to carry on all pre-disease activities without restriction.</td>
</tr>
<tr>
<td>1</td>
<td>Restricted in physically strenuous activity but ambulatory and able to carry out work of a light or sedentary nature (e.g. light housework, office work).</td>
</tr>
<tr>
<td>2</td>
<td>Ambulatory and capable of all self-care but unable to carry out any work activities. Up and about more than 50% of waking hours.</td>
</tr>
<tr>
<td>3</td>
<td>Capable of only limited self-care. Confined to bed or chair more than 50% of waking hours.</td>
</tr>
<tr>
<td>4</td>
<td>Completely disabled. Cannot carry on any self-care. Totally confined to bed or chair.</td>
</tr>
</tbody>
</table>

International Prognostic Index (IPI) for DLBCL Following CHOP-Type Chemotherapy\(^\text{18}\)

<table>
<thead>
<tr>
<th>Factors</th>
<th># of Factors</th>
<th>5 year PFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age > 60 years</td>
<td>0-1</td>
<td>60%</td>
</tr>
<tr>
<td>ECOG 2-4</td>
<td>2-3</td>
<td>30%</td>
</tr>
<tr>
<td>Stage III/IV</td>
<td>4-5</td>
<td>15%</td>
</tr>
<tr>
<td>ENS > 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased LDH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Revised IPI for DLBCL Following R-CHOP Chemotherapy\(^\text{19}\)

<table>
<thead>
<tr>
<th>Factors</th>
<th># of Factors</th>
<th>% of Patients</th>
<th>4 year PFS</th>
<th>4 year DSS</th>
<th>4 year OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age > 60 years</td>
<td>0</td>
<td>11</td>
<td>96%</td>
<td>95%</td>
<td>95%</td>
</tr>
<tr>
<td>ECOG 2-4</td>
<td>1-2</td>
<td>48</td>
<td>81%</td>
<td>83%</td>
<td>79%</td>
</tr>
<tr>
<td>Stage III/IV</td>
<td>3-5</td>
<td>41</td>
<td>55%</td>
<td>56%</td>
<td>55%</td>
</tr>
<tr>
<td>ENS > 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased LDH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-CHOP for DLBCL by Elevated LDH and Stage 3-4\(^\text{19}\)

<table>
<thead>
<tr>
<th># of Factors</th>
<th>% of Patients</th>
<th>4 year PFS</th>
<th>4 year DSS</th>
<th>4 year OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>27</td>
<td>92%</td>
<td>90%</td>
<td>84%</td>
</tr>
<tr>
<td>1</td>
<td>38</td>
<td>78%</td>
<td>79%</td>
<td>77%</td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>53%</td>
<td>56%</td>
<td>55%</td>
</tr>
</tbody>
</table>

An online prognostic calculator is available at: http://www.qxmd.com/calculate-online/hematology/prognosis-large-b-cell-lymphoma-r-ipi

Modified IPI for Non-Bulky Stage I-IIA DLBCL Treated with CHOP x 3 cycles and IFRT

<table>
<thead>
<tr>
<th>Factors</th>
<th># of Factors</th>
<th>5 year PFS</th>
<th>10 year PFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age > 60 yrs</td>
<td>0</td>
<td>94%</td>
<td>89%</td>
</tr>
<tr>
<td>ECOG 2-4</td>
<td>1-2</td>
<td>79%</td>
<td>73%</td>
</tr>
<tr>
<td>Stage II</td>
<td>3-4</td>
<td>60%</td>
<td>50%</td>
</tr>
</tbody>
</table>
Salvage Age-Adjusted IPI for Relapsed DLBCL\(^{20}\)

<table>
<thead>
<tr>
<th>Factors</th>
<th># of Factors</th>
<th>~ PFS for HDCT/ASCT Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage III/IV</td>
<td>0</td>
<td>70%</td>
</tr>
<tr>
<td>Elevated LDH</td>
<td>1</td>
<td>50%</td>
</tr>
<tr>
<td>ECOG 2-4</td>
<td>2</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10%</td>
</tr>
</tbody>
</table>

Primary CNS Lymphoma (Memorial Sloan Kettering Cancer Center Model)\(^{21}\)

<table>
<thead>
<tr>
<th>Risk Group</th>
<th>mOS</th>
<th>5 year OS</th>
<th>mFFS</th>
<th>5 year FFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age < 50 years</td>
<td>5-8 years</td>
<td>50-60%</td>
<td>2-5 years</td>
<td>35-40%</td>
</tr>
<tr>
<td>Age >50 years, KPS ≥ 70%</td>
<td>2-3 years</td>
<td>15-35%</td>
<td>1.5 years</td>
<td>10-20%</td>
</tr>
<tr>
<td>Age >50 years, KPS < 70%</td>
<td>1 year</td>
<td>10%</td>
<td>0.5-1 year</td>
<td>5-10%</td>
</tr>
</tbody>
</table>

Simplified IELSG Primary CNS Lymphoma (Leon Berard Cancer Centre Model)\(^{22}\)

<table>
<thead>
<tr>
<th>Factors</th>
<th># of Factors</th>
<th>mOS</th>
<th>5 year OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age > 60 years</td>
<td>0</td>
<td>6 years</td>
<td>60%</td>
</tr>
<tr>
<td>Elevated LDH</td>
<td>1</td>
<td>4 years</td>
<td>40%</td>
</tr>
<tr>
<td>Deep Tumour</td>
<td>2</td>
<td>1 year</td>
<td>23%</td>
</tr>
<tr>
<td>o Cerebellum</td>
<td>3</td>
<td>0.5 years</td>
<td>0%</td>
</tr>
<tr>
<td>o Periventricular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o Basal ganglion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o Brainstem</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Follicular Lymphoma Internacional Prognostic Index (FLIPI) Pre-dated Rituximab-Chemotherapy (Survival with Non-Rituximab Containing Therapy)\(^{23}\)

<table>
<thead>
<tr>
<th>Factors</th>
<th>Prognosis</th>
<th># Factors</th>
<th>% Patients</th>
<th>5 year OS</th>
<th>10 year OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≥ 60 years</td>
<td>Good</td>
<td>0-1</td>
<td>36</td>
<td>90%</td>
<td>70%</td>
</tr>
<tr>
<td>Stage III-IV</td>
<td>Intermediate</td>
<td>2</td>
<td>37</td>
<td>78%</td>
<td>50%</td>
</tr>
<tr>
<td>Increased LDH</td>
<td>Poor</td>
<td>3-5</td>
<td>27</td>
<td>53%</td>
<td>35%</td>
</tr>
</tbody>
</table>

An online prognostic calculator is available at: http://www.qxmd.com/calculator-online/hematology/follicular-lymphoma-international-prognostic-index-flipi

FLIPI 2 \(^{24}\)

<table>
<thead>
<tr>
<th>Factors</th>
<th>Prognosis</th>
<th># Factors</th>
<th>% Patients</th>
<th>3 year PFS</th>
<th>5 year PFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age > 60 years</td>
<td>Good</td>
<td>0</td>
<td>20</td>
<td>91%</td>
<td>80%</td>
</tr>
<tr>
<td>Marrow involvement</td>
<td>Intermediate</td>
<td>1-2</td>
<td>53</td>
<td>69%</td>
<td>51%</td>
</tr>
<tr>
<td>Increased B2M</td>
<td>Poor</td>
<td>3-5</td>
<td>27</td>
<td>51%</td>
<td>19%</td>
</tr>
<tr>
<td>Hb < 120 g/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5+ nodal sites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hodgkin Lymphoma International Prognostic Score (IPS) for Advanced Disease

<table>
<thead>
<tr>
<th>Factors</th>
<th># of Factors</th>
<th>5 year FFS with ABVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≥45 years</td>
<td>0-1</td>
<td>80%</td>
</tr>
<tr>
<td>Male</td>
<td>2</td>
<td>70%</td>
</tr>
<tr>
<td>Stage IV</td>
<td>3</td>
<td>60%</td>
</tr>
<tr>
<td>Albumin <40 g/L</td>
<td>4-7</td>
<td>50%</td>
</tr>
<tr>
<td>Hb<105 g/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WBC≥15 x 10^9/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphocyte < 0.6 x 10^9/L or < 8% WBC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An online prognostic calculator is available at: http://www.qxmd.com/calculate-online/hematology/hasenclever-hodgkins-prognosis-score-ips

Prognosis of Hodgkin Lymphoma Relapsed After Prior Chemotherapy

<table>
<thead>
<tr>
<th>Factors</th>
<th># of Factors</th>
<th>2nd Line Chemo</th>
<th>HDCT/ASCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to relapse <1 year</td>
<td>0</td>
<td>70%</td>
<td>100%</td>
</tr>
<tr>
<td>Relapse stage III-IV</td>
<td>1</td>
<td>60%</td>
<td>70%</td>
</tr>
<tr>
<td>Hb<105 female, 120 male</td>
<td>2</td>
<td>30%</td>
<td>50%</td>
</tr>
<tr>
<td>3</td>
<td>0%</td>
<td>50%</td>
<td></td>
</tr>
</tbody>
</table>

* 5yr OS by second line therapy.
* Freedom from second failure was 50% for 0-1 factor, 35% for 2 factors, and 15% for 3 factors.

Mantle Cell Lymphoma (MIPI)

<table>
<thead>
<tr>
<th>Points</th>
<th>Age</th>
<th>ECOG</th>
<th>LDH (ULN 235)</th>
<th>WBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td><50</td>
<td>0-1</td>
<td><0.67 ULN</td>
<td><6.7</td>
</tr>
<tr>
<td>1</td>
<td>50-59</td>
<td>-</td>
<td>0.67-0.99 ULN</td>
<td>6.7-9.99</td>
</tr>
<tr>
<td>2</td>
<td>60-69</td>
<td>2-4</td>
<td>1-1.49 ULN</td>
<td>10.0-14.99</td>
</tr>
<tr>
<td>3</td>
<td>70+</td>
<td>-</td>
<td>≥1.5 ULN</td>
<td>≥15.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Risk</th>
<th># Points</th>
<th>~Median OS</th>
<th>~5 year OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>0-3</td>
<td>6 years</td>
<td>60%</td>
</tr>
<tr>
<td>Intermediate</td>
<td>4-5</td>
<td>4 years</td>
<td>40%</td>
</tr>
<tr>
<td>High</td>
<td>6-11</td>
<td>2 years</td>
<td>20%</td>
</tr>
</tbody>
</table>

An online prognostic calculator is available at: http://www.qxmd.com/calculate-online/hematology/prognosis-mantle-cell-lymphoma-mipi
Post-Transplantation Lymphoproliferative Disease (PTLD) Prognostic Scoring Systems:

1. Evens et al., 201028

Score 1 point for each: hypoalbumenia, bone marrow involvement, CNS involvement

<table>
<thead>
<tr>
<th># of Factors</th>
<th>Overall 3 year PFS</th>
<th>Overall 3 year OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>84%</td>
<td>93%</td>
</tr>
<tr>
<td>1</td>
<td>66%</td>
<td>68%</td>
</tr>
<tr>
<td>2-3</td>
<td>7%</td>
<td>11%</td>
</tr>
</tbody>
</table>

Patients who received rituximab-based therapy as part of their initial treatment had a 3-year PFS of 70% and an OS of 73% compared with a 3-year PFS of 21% (p<0.0001) and an OS of 33% (p=0.0001) for patients who did not receive rituximab.

2. Leblond et al., 200129

<table>
<thead>
<tr>
<th>Risk Group</th>
<th>PS and/or # of Sites</th>
<th>mOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>low-risk</td>
<td>PS < 2 and 1</td>
<td>>5 years</td>
</tr>
<tr>
<td>intermediate risk</td>
<td>PS > 2 or 2 or more</td>
<td>3 years</td>
</tr>
<tr>
<td>high risk</td>
<td>PS > 2 and 2 or more</td>
<td>1 month</td>
</tr>
</tbody>
</table>

Waldenström Macroglobulinemia

<table>
<thead>
<tr>
<th>Study</th>
<th>Prognostic Factors</th>
<th>Stratification</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gobbi et al, 199430</td>
<td>Hb<9 g/dL Age >70 years Weight loss Cryoglobulinaemia</td>
<td>0-1 factor 0-2 2-4 factors</td>
<td>mOS 80 months mOS 48 months</td>
</tr>
<tr>
<td>Morel et al, 200031</td>
<td>Age ≥ 65 years Albumin <40 g/L 1 cytopenia (1-point) >1 cytopenia (2-points)</td>
<td>0-1 factor 2 factors 3-4 factors</td>
<td>5 year survival 87% 5 year survival 62% 5 year survival 25%</td>
</tr>
<tr>
<td>Dhodapkar et al, 200132</td>
<td>β2M >3 mg/L Hb <12 g/dL IgM >40 g/L</td>
<td>β2M<3 mg/L + Hb≥12 g/dL β2M<3 mg/L + Hb<12 g/dL β2M≥3 mg/L + IgM<40 g/L β2M>3 mg/L + IgM>40 g/L</td>
<td>5 year survival 87% 5 year survival 63% 5 year survival 53% 5 year survival 21%</td>
</tr>
<tr>
<td>Merlini et al, 200333</td>
<td>Age≥60 years Hb<100 g/L Albumin <35 g/L</td>
<td><60 years, Hb≥100, Alb>35 >60 years, Hb <100, Alb <35 Other combinations</td>
<td>mOS 178 months mOS 33 months mOS 84 months</td>
</tr>
</tbody>
</table>
CLL Prognostic Score from MD Anderson Cancer Center

<table>
<thead>
<tr>
<th>Factors</th>
<th># of Factors</th>
<th># of Patients</th>
<th>5 year OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age >60 years</td>
<td>0</td>
<td>364</td>
<td>96%</td>
</tr>
<tr>
<td>B2M >2 mg/L</td>
<td>1</td>
<td>623</td>
<td>79%</td>
</tr>
<tr>
<td>Alb < 35</td>
<td>2</td>
<td>497</td>
<td>69%</td>
</tr>
<tr>
<td>Creatinine > 1.6</td>
<td>3</td>
<td>70</td>
<td>30%</td>
</tr>
<tr>
<td>17p mutations</td>
<td>4-5</td>
<td>10</td>
<td>16%</td>
</tr>
</tbody>
</table>

CLL International Prognostic Score: Bahlo 2015ASCO, J Clin Oncol 33, 2015 (suppl; abstr 7002)

<table>
<thead>
<tr>
<th>Factors</th>
<th>Points</th>
<th>Risk Group</th>
<th>5 year OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age >65 years</td>
<td>1</td>
<td>Low (0-1 points)</td>
<td>93% (~90%)</td>
</tr>
<tr>
<td>Clinical Stage >1</td>
<td>1</td>
<td>Intermediate (2-3 points)</td>
<td>79% (~80%)</td>
</tr>
<tr>
<td>IGHV unmutated</td>
<td>2</td>
<td>High (4-6 points)</td>
<td>64% (~60%)</td>
</tr>
<tr>
<td>B2M >3.5 mg/L</td>
<td>2</td>
<td>Very high risk (7-10 points)</td>
<td>23% (~25%)</td>
</tr>
<tr>
<td>17p deletion or TP53 mutations</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The full analysis set was collected from eight phase 3 trials in France, Germany, the United Kingdom, the United States, and Poland (n=3,472 patients, median age 61 years (27-86 yrs)). 89% of patients had received treatment for CLL and median overall survival (OS) was 95 months. The model was externally validated in a third dataset comprising 845 patients with newly diagnosed CLL from the Mayo Clinic; 39% had received treatment for CLL. The final model of multivariate analysis identified 5 independent predictors for OS: \(TP53\) (17p) mutation (deleted and/or mutated; hazard ratio [HR]: 4.2); \(IGHV\) mutation status (unmutated, HR: 2.6); B2M (>3.5 mg/L; HR: 2.0); clinical stage (Binet B/C or Rai I-IV, HR: 1.6); and age (>65 years, HR: 1.7). Using weighted grading, a prognostic score from 0 to 10 was derived that separated the patients into four different groups: low risk (score 0-1), intermediate risk (score 2-3), high risk (score 4-6), and very high risk (score 7-10). At 5 years, significantly different rates of OS were observed for the low to the very high risk group, 93%, 79%, 64%, and 23%, respectively \((P<0.001; \ C\text{-statistic c}=0.72\ [95\% \ CI: 0.69, 0.76])\). The multivariable model was confirmed on the internal validation datasets; in addition, the four risk groups were reproduced with on the Mayo dataset, with 5-year OS rates of 97%, 91%, 68% and 21%, respectively \((P<0.001; \ C\text{-statistic c}=0.79\ [95\% \ CI: 0.74, 0.85])\).
Appendix D: Lymphoma Response Criteria

<table>
<thead>
<tr>
<th>Response</th>
<th>Definition</th>
<th>Nodal Masses</th>
<th>Spleen, Liver</th>
<th>Bone Marrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>Disappearance of all evidence of disease</td>
<td>(a) FDG-avid or PET positive prior to therapy; mass of any size permitted if PET negative</td>
<td>not palpable, nodules disappeared</td>
<td>Infiltrate cleared on repeat biopsy; if indeterminate by morphology, immunohistochemistry should be negative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) Variably FDG-avid or PET negative; regression to normal size on CT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR</td>
<td>Regression of measurable disease and no new sites</td>
<td>$\geq 50%$ decrease in SPD of up to 6 largest dominant masses; no increase in size of other nodes (a) FDG-avid or PET positive prior to therapy; one or more PET positive at previously involved site (b) Variably FDG-avid or PET negative; regression on CT</td>
<td>$\geq 50%$ decrease in SPD of nodules (for single nodule in greatest transverse diameter); no increase in size of liver or spleen</td>
<td>Irrelevant if positive prior to therapy; cell type should be specified</td>
</tr>
<tr>
<td>SD</td>
<td>Failure to attain CR/PR or PD</td>
<td>(a) FDG-avid or PET positive prior to therapy; PET positive at prior sites of disease and no new sites on CT or PET (b) Variably FDG-avid or PET negative; no change in size of previous lesions on CT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relapsed Disease or PD</td>
<td>Any new lesion or increase by $\geq 50%$ of previously involved sites from nadir</td>
<td>Appearance of a new lesion(s) > 1.5 cm in any axis, $\geq 50%$ increase in SPD of more than one node, or $\geq 50%$ increase in longest diameter of a previously identified node > 1 cm in short axis Lesions PET positive if FDG-avid lymphoma or PET positive prior to therapy</td>
<td>$> 50%$ increase from nadir in the SPD of any previous lesions</td>
<td>New or recurrent involvement</td>
</tr>
</tbody>
</table>

Abbreviations:
- CR=complete response, FDG-PET=(18F)-fluorodeoxyglucose positron emission tomography, CT=computed tomography, PR=partial response, SPD=sum of the product of the diameters, SD=stable disease, PD=progressive disease.

LYMPHOMA RESPONSE CRITERIA

Complete Response (CR)

The designation of CR requires the following:

1. Complete disappearance of all detectable clinical evidence of disease and disease-related symptoms if present before therapy.

2a. Typically FDG-avid lymphoma: in patients with no pretreatment PET scan or when the PET scan was positive before therapy, a post-treatment residual mass of any size is permitted as long as it is PET negative.
2b. Variably FDG-avid lymphomas/FDG avidity unknown: in patients without a pretreatment PET scan, or if a pretreatment PET scan was negative, all lymph nodes and nodal masses must have regressed on CT to normal size (≤1.5 cm in their greatest transverse diameter for nodes >1.5 cm before therapy). Previously involved nodes that were 1.1 to 1.5 cm in their long axis and more than 1.0 cm in their short axis before treatment must have decreased to ≤1.0 cm in their short axis after treatment.

3. The spleen and/or liver, if considered enlarged before therapy on the basis of a physical examination or CT scan, should not be palpable on physical examination and should be considered normal size by imaging studies, and nodules related to lymphoma should disappear. However, determination of splenic involvement is not always reliable because a spleen considered normal in size may still contain lymphoma, whereas an enlarged spleen may reflect variations in anatomy, blood volume, the use of hematopoietic growth factors, or causes other than lymphoma.

4. If the bone marrow was involved by lymphoma before treatment, the infiltrate must have cleared on repeat bone marrow biopsy. The biopsy sample on which this determination is made must be adequate (with a goal of >20 mm unilateral core). If the sample is indeterminate by morphology, it should be negative by immunohistochemistry. A sample that is negative by immunohistochemistry but that demonstrates a small population of clonal lymphocytes by flow cytometry will be considered a CR until data become available demonstrating a clear difference in patient outcome.

Partial Response (PR)

The designation of PR requires all of the following:

1. At least a 50% decrease in sum of the product of the diameters (SPD) of up to six of the largest dominant nodes or nodal masses. These nodes or masses should be selected according to all of the following: they should be clearly measurable in at least 2 perpendicular dimensions; if possible they should be from disparate regions of the body; and they should include mediastinal and retroperitoneal areas of disease whenever these sites are involved.

2. No increase should be observed in the size of other nodes, liver, or spleen.

3. Splenic and hepatic nodules must regress by ≥50% in their SPD or, for single nodules, in the greatest transverse diameter.

4. With the exception of splenic and hepatic nodules, involvement of other organs is usually assessable and no measurable disease should be present.

5. Bone marrow assessment is irrelevant for determination of a PR if the sample was positive before treatment. However, if positive, the cell type should be specified (e.g., large-cell lymphoma or small neoplastic B cells). Patients who achieve a CR by the above criteria, but who have persistent morphologic bone marrow involvement will be considered partial responders. When the bone marrow was involved before therapy and a clinical CR was achieved, but with no bone marrow assessment after treatment, patients should be considered partial responders.
6. No new sites of disease should be observed.

7. Typically FDG-avid lymphoma: for patients with no pre-treatment PET scan or if the PET scan was positive before therapy, the post-treatment PET should be positive in at least one previously involved site.

8. Variably FDG-avid lymphomas/FDG-avidity unknown: for patients without a pre-treatment PET scan, or if a pre-treatment PET scan was negative, CT criteria should be used.

9. In patients with follicular lymphoma or mantle-cell lymphoma, a PET scan is only indicated with one or at most two residual masses that have regressed by more than 50% on CT; those with more than two residual lesions are unlikely to be PET negative and should be considered partial responders.

Stable Disease (SD)

Stable disease is defined as the following:

1. A patient is considered to have SD when he or she fails to attain the criteria needed for a CR or PR, but does not fulfill those for progressive disease (see Relapsed Disease [after CR]/Progressive Disease [after PR, SD]).

2. Typically FGD-avid lymphomas: the PET should be positive at prior sites of disease with no new areas of involvement on the post-treatment CT or PET.

3. Variably FDG-avid lymphomas/FDG-avidity unknown: for patients without a pre-treatment PET scan or if the pre-treatment PET was negative, there must be no change in the size of the previous lesions on the post-treatment CT scan.

Relapsed Disease (after CR)/ Progressive Disease (after PR or SD)

1. Lymph nodes should be considered abnormal if the long axis is more than 1.5 cm regardless of the short axis. If a lymph node has a long axis of 1.1 to 1.5 cm, it should only be considered abnormal if its short axis is more than 1.0. Lymph nodes ≤1.0 x ≤1.0 cm will not be considered as abnormal for relapse or progressive disease.

2. Appearance of any new lesion more than 1.5 cm in any axis during or at the end of therapy, even if other lesions are decreasing in size. Increased FDG uptake in a previously unaffected site should only be considered relapsed or progressive disease after confirmation with other modalities. In patients with no prior history of pulmonary lymphoma, new lung nodules identified by CT are mostly benign. Thus, a therapeutic decision should not be made solely on the basis of the PET without histologic confirmation.

3. At least a 50% increase from nadir in the SPD of any previously involved nodes, or in a single involved node, or the size of other lesions (e.g., splenic or hepatic nodules). To be considered
progressive disease, a lymph node with a diameter of the short axis of less than 1.0 cm must increase by $\geq 50\%$ and to a size of 1.5 x 1.5 cm or more than 1.5 cm in the long axis.

4. At least a 50% increase in the longest diameter of any single previously identified node more than 1 cm in its short axis.

5. Lesions should be PET positive if observed in a typical FDG-avid lymphoma or the lesion was PET positive before therapy unless the lesion is too small to be detected with current PET systems (<1.5 cm in its long axis by CT).

6. Measurable extranodal disease should be assessed in a manner similar to that for nodal disease. For these recommendations, the spleen is considered nodal disease. Disease that is only assessable (e.g., pleural effusions, bone lesions) will be recorded as present or absent only, unless, while an abnormality is still noted by imaging studies or physical examination, it is found to be histologically negative.

7. In clinical trials where PET is unavailable to the vast majority of participants, or where PET is not deemed necessary or appropriate for use (e.g., a trial in patients with MALT lymphoma), response should be assessed as above, but only using CT scans. However, residual masses should not be assigned CRu status, but should be considered partial responses.
Revised Criteria for Response Assessment

<table>
<thead>
<tr>
<th>Response and site</th>
<th>PET-CT-Based Response</th>
<th>CT-Based Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymph nodes and extralymphatic sites</td>
<td>Complete metabolic response Score 1, 2, or 3 with or without a residual mass on 5Pꝉ It is recognized that in Waldeyer’s ring or extranodal sites with high physiologic uptake or with activation within spleen or marrow (eg. with chemotherapy or myeloid colony-stimulating factors), uptake may be greater than normal mediastinum and/or liver. In this circumstance, complete metabolic response may be inferred if uptake at sites of initial involvement is no greater than surrounding normal tissue even if the tissue has high physiologic uptake.</td>
<td>Complete radiologic response (all of the following) Target nodes/nodal masses must regress to ≤ 1.5 cm in LDi No extralymphatic sites of disease</td>
</tr>
<tr>
<td>Nonmeasured lesion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organ enlargement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New lesions</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Bone marrow</td>
<td>None</td>
<td>No evidence of FDG-avid disease in marrow</td>
</tr>
<tr>
<td>Partial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymph nodes and extralymphatic sites</td>
<td>Partial metabolic response Score 4 or 5 I with reduced uptake compared with baseline and residual masses(es) of any size At end of treatment, findings suggest responding disease</td>
<td>Partial remission (all of the following) ≥ 50% decrease in SPD of up to 6 target measurable nodes and extranodal sites When a lesion is too small to measure on CT, assign 5 mm x 5 mm as the default value When no longer visible, 0 x 0 mm For a node > 5 mm x 5 mm, but smaller than normal, use actual measurement for calculation Absent/normal, regressed, but no increase Spleen must have regressed by > 50% in length beyond normal None Not applicable</td>
</tr>
<tr>
<td>Nonmeasured lesions</td>
<td>Partial metabolic response Score 4 or 5 I with reduced uptake compared with baseline and residual masses(es) of any size</td>
<td></td>
</tr>
<tr>
<td>Organ enlargement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New lesions</td>
<td>None</td>
<td>Residual uptake higher than uptake in normal marrow but reduced compared with baseline (diffuse uptake compatible with reactive changes from chemotherapy allowed). If there are persistent focal changes in the marrow in the context of a nodal response, consideration should be given to further evaluation with MRI or biopsy or an interval scan.</td>
</tr>
<tr>
<td>Bone marrow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No response or stable disease</td>
<td>No metabolic response</td>
<td>Stable disease</td>
</tr>
<tr>
<td>Target nodes/nodal masses, extranodal lesions</td>
<td>Score 4 or 5 with no significant change in FDG uptake from baseline at interim or end of treatment</td>
<td>< 50% decrease from baseline in SPD of up to 6 dominant, measurable nodes and extranodal sites; no criteria for progressive disease are met No increase consistent with progression No increase consistent with progression None Not applicable</td>
</tr>
<tr>
<td>Nonmeasured lesions</td>
<td>No change from baseline</td>
<td></td>
</tr>
<tr>
<td>Organ enlargement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New lesions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bone marrow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Progressive disease</td>
<td>Progressive metabolic disease</td>
<td>Progressive disease requires at least 1 of the following PPD progression:</td>
</tr>
<tr>
<td>Individual target nodes/nodal masses</td>
<td>Score 4 or 5 with an increase in intensity of uptake from baseline and/or New FDG-avid foci consistent with lymphoma at interim or end-of-treatment assessment</td>
<td>An individual node/lesion must be abnormal with: LDI > 1.5cm and Increase by ≥50% from PPD nadir and An increase in LDI or SDI from nadir 0.5 cm for lesions ≤ 2 cm 1.0 cm for lesions > 2 cm In the setting of splenomegaly, the splenic length must increase by > 50% of the extent of its prior increase beyond baseline (eg. a 15-cm spleen mist increase to > 16 cm). If no prior splenomegaly, must increase by at least 2 cm from baseline New or recurrent splenomegaly New or clear progression of preexisting nonmeasured lesions</td>
</tr>
<tr>
<td>Extranodal lesions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonmeasured lesions</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Response and site</td>
<td>PET-CT-Based Response</td>
<td>CT-Based Response</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>New lesions</td>
<td>New FDG-avid foci consistent with lymphoma rather than another etiology (eg. Infection, inflammation). If uncertain regarding etiology or new lesions, biopsy or interval scan may be considered</td>
<td>Regrowth of previously resolved lesions A new node > 1.5 cm in any axis A new extranodal site> 1.0cm in any axis; if < 1.0 cm in any axis, its presence must be unequivocal and must be attributable to lymphoma Assessable disease of any size unequivocally attributable to lymphoma New or recurrent involvement</td>
</tr>
<tr>
<td>Bone Marrow</td>
<td>New or recurrent FDG-avid foci</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: 5PS, 5-point scale; CT, computed tomography; FDG, fluorodeoxyglucose; IHC immunohistochemistry; LDi, longest transverse diameter of a lesion; MRI, magnetic resonance imaging; PET, positron emission tomography; PPD, cross product of the LDi and perpendicular diameter; SDi, shortest axis perpendicular to the LDi; SPD, sum of the product of the perpendicular diameters for multiple lesions.

* A score of 3 in many patients indicates a good prognosis with standard treatment, especially if at the time of an interim scan. However, in trials involving PET where de-escalation is investigated, it may be preferable to consider a score of 3 as inadequate response (to avoid undertreatment). Measured dominant lesions: Up to six of the largest dominant nodes, nodal masses, and extranodal lesions selected to be clearly measurable in two diameters. Nodes should preferably be from disparate regions of the body and should include, where applicable, mediastinal and retroperitoneal areas. Non-nodal lesions include those in solid organs (eg. liver, spleen, kidneys, lungs), GI involvement, cutaneous lesions, or those noted on palpation. Nonmeasured lesions: Any disease not selected as measured, dominant disease and truly assessable disease should be considered not measured. These sites include any nodes, nodal masses, as truly assessable disease, which is any site of suspected disease that would be difficult to follow quantitatively with measurement, including pleural effusions, ascites, bone lesions, leptomeningeal disease, abdominal masses, and other lesions that cannot be confirmed and followed by imaging. In Waldeyer’s ring or in extranodal sites (eg, GI tract, liver, bone, marrow), FDG uptake may be greater than in the mediastinum with complete metabolic response, but should be no higher than surrounding normal physiologic uptake (eg. with marrow activation as a result of chemotherapy or myeloid growth factors). IPET 5PS: 1, no uptake above background; 2, uptake ≤ mediastinum; 3, uptake > mediastinum but ≤ liver; 4, uptake moderately > liver; 5, uptake markedly higher than liver and/or new lesions; X, new areas of uptake unlikely to be related to lymphoma.
Appendix E: New Lymphoma Patient Data Sheet

Identification:

<table>
<thead>
<tr>
<th>Name</th>
<th>DOB (d/m/y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHN</td>
<td>ACB#</td>
</tr>
<tr>
<td>Gender:</td>
<td>male female</td>
</tr>
<tr>
<td>Age at Diagnosis:</td>
<td></td>
</tr>
</tbody>
</table>

Diagnostic Information:

<table>
<thead>
<tr>
<th>Date Diagnosis (d/m/y)</th>
<th>Surgical accession #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biopsy type:</td>
<td>open surgical/core needle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagnosis:</th>
<th>Stage:</th>
<th>B sx: yes no</th>
<th>Bulk>10cm: yes no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marrow +ve:</td>
<td>yes no</td>
<td>Other Extranodal Sites:</td>
<td></td>
</tr>
<tr>
<td>LDH elevated:</td>
<td>yes no</td>
<td>ECOG Status: 0 1 2 3 4</td>
<td></td>
</tr>
</tbody>
</table>

Prognosis Score by Histology:

Large Cell Lymphoma: #IPI Factors: 0 1 2 3 4 5

Circle if present: Age > 60yr Stage III/IV LDH>ULN ECOG 2-4 >2 Extraneal Sites

Follicular: # FLIPI Factors: 0 1 2 3 4 5

Circle if present: Age > 60yr Stage III/IV LDH>ULN Hb<120g/L >5 Nodal Sites

Hodgkin: # IPS Factors: 0 1 2 3 4 5 6 7

Circle if present: Age > 45yr Stage IV Male Lymphocyte<0.6 (or < 8%WBC) Albumin < 40 g/L Hb < 105g/L WBC > 15

Initial Treatment:

<table>
<thead>
<tr>
<th>Therapy</th>
<th>Plan</th>
<th>Regimen / Radiation Site</th>
<th>Start Date d/m/y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemotherapy</td>
<td>yes</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Maintenance Rituximab</td>
<td>yes</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Radiotherapy</td>
<td>yes</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Stem Cell Transplant</td>
<td>yes</td>
<td>no</td>
<td></td>
</tr>
</tbody>
</table>

First Relapse Information:

Relapse/progression after treatment 1: yes no Date relapse (d/m/y)__________

2nd Treatment: Regimen__________ Radiation yes no HDCT/ASCT yes no

Survival Information:

Dead: yes no Date death or last follow-up (d/m/y)__________

Cause of death: lymphoma other (specify) ________________

www.ahs.ca/guru
Ann Arbor Staging Nodal Sites

Revised-International Prognostic Index for Diffuse Large B-Cell Lymphoma Following R-CHOP Chemotherapy

Factors:
- Age > 60yr #Factors %pts 4yr PFS
- ECOG 2-4 0 11 95%
- Stage III/IV 1-2 48 80%
- ENS > 1 3-5 41 55%
- ↑ LDH

FLIPI (Follicular Lymphoma International Prognostic Index)

Factors Survival with Non-Rituximab Containing Therapy
- Age > 60yrs Prognosis # %pt 5yr 10yr
- Stage 3-4 Good 0-1 36 90% 70%
- Increased LDH Intermed 2 37 75% 50%
- Hb < 120g/l Poor 3-5 27 50% 35%
- 5+ nodal sites

Primary CNS lymphoma Prognostic Index

<table>
<thead>
<tr>
<th>Overall Survival</th>
<th>Failure-Free Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adverse Factors</td>
<td>mOS</td>
</tr>
<tr>
<td>Age < 50 yrs</td>
<td>5-8 yrs</td>
</tr>
<tr>
<td>Age > 50 yrs KPS ≥ 70%</td>
<td>2-3 yrs</td>
</tr>
<tr>
<td>Age > 50 yrs KPS < 70%</td>
<td>1 yr</td>
</tr>
</tbody>
</table>

Hodgkin Lymphoma International Prognostic Score for Advanced Stage Disease

ECOG Performance Status

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Fully active, able to carry on all pre-disease activities without restriction</td>
</tr>
<tr>
<td>1</td>
<td>Restricted in physically strenuous activity but ambulatory and able to carry out work of a light or sedentary nature.</td>
</tr>
<tr>
<td>2</td>
<td>Ambulatory, capable of all self-care but unable to carry out any work activities. Up and about >50% waking hours.</td>
</tr>
<tr>
<td>3</td>
<td>Capable of only limited self-care. Confined to bed or chair more than 50% of waking hours.</td>
</tr>
<tr>
<td>4</td>
<td>Completely disabled. Cannot carry on any self-care. Totally confined to bed or chair.</td>
</tr>
</tbody>
</table>

www.ahs.ca/guru
Appendix F: Ideal Body Weight

<table>
<thead>
<tr>
<th>Height (cm)</th>
<th>Males – Weight (kg)</th>
<th>Females – Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small Frame</td>
<td>Medium Frame</td>
</tr>
<tr>
<td>145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>146</td>
<td></td>
<td></td>
</tr>
<tr>
<td>147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>151</td>
<td></td>
<td></td>
</tr>
<tr>
<td>152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>57.3</td>
<td>59.6</td>
</tr>
<tr>
<td>156</td>
<td>57.7</td>
<td>59.9</td>
</tr>
<tr>
<td>157</td>
<td>58.0</td>
<td>60.3</td>
</tr>
<tr>
<td>158</td>
<td>58.4</td>
<td>60.7</td>
</tr>
<tr>
<td>159</td>
<td>58.8</td>
<td>61.0</td>
</tr>
<tr>
<td>160</td>
<td>59.1</td>
<td>61.4</td>
</tr>
<tr>
<td>161</td>
<td>59.5</td>
<td>61.8</td>
</tr>
<tr>
<td>162</td>
<td>59.8</td>
<td>62.2</td>
</tr>
<tr>
<td>163</td>
<td>60.2</td>
<td>62.7</td>
</tr>
<tr>
<td>164</td>
<td>60.5</td>
<td>63.1</td>
</tr>
<tr>
<td>165</td>
<td>60.9</td>
<td>63.6</td>
</tr>
<tr>
<td>166</td>
<td>61.3</td>
<td>64.1</td>
</tr>
<tr>
<td>167</td>
<td>61.7</td>
<td>64.6</td>
</tr>
<tr>
<td>168</td>
<td>62.2</td>
<td>65.2</td>
</tr>
<tr>
<td>169</td>
<td>62.6</td>
<td>65.7</td>
</tr>
<tr>
<td>170</td>
<td>63.1</td>
<td>66.3</td>
</tr>
<tr>
<td>171</td>
<td>63.5</td>
<td>66.8</td>
</tr>
<tr>
<td>172</td>
<td>64.0</td>
<td>67.3</td>
</tr>
<tr>
<td>173</td>
<td>64.4</td>
<td>67.8</td>
</tr>
<tr>
<td>174</td>
<td>64.9</td>
<td>68.4</td>
</tr>
<tr>
<td>175</td>
<td>65.3</td>
<td>68.9</td>
</tr>
<tr>
<td>176</td>
<td>65.7</td>
<td>69.5</td>
</tr>
<tr>
<td>177</td>
<td>66.2</td>
<td>70.0</td>
</tr>
<tr>
<td>178</td>
<td>66.7</td>
<td>70.6</td>
</tr>
<tr>
<td>179</td>
<td>67.2</td>
<td>71.2</td>
</tr>
<tr>
<td>180</td>
<td>67.8</td>
<td>71.8</td>
</tr>
<tr>
<td>181</td>
<td>68.4</td>
<td>72.4</td>
</tr>
<tr>
<td>182</td>
<td>69.0</td>
<td>73.1</td>
</tr>
<tr>
<td>183</td>
<td>69.6</td>
<td>73.7</td>
</tr>
<tr>
<td>184</td>
<td>70.2</td>
<td>74.4</td>
</tr>
<tr>
<td>185</td>
<td>70.8</td>
<td>75.2</td>
</tr>
<tr>
<td>186</td>
<td>71.4</td>
<td>75.8</td>
</tr>
<tr>
<td>187</td>
<td>72.1</td>
<td>76.4</td>
</tr>
<tr>
<td>188</td>
<td>72.7</td>
<td>77.0</td>
</tr>
<tr>
<td>189</td>
<td>73.4</td>
<td>77.8</td>
</tr>
<tr>
<td>190</td>
<td>74.1</td>
<td>78.7</td>
</tr>
<tr>
<td>191</td>
<td>74.8</td>
<td>79.5</td>
</tr>
</tbody>
</table>
References

Development and Revision History
This guideline was developed by a multidisciplinary working group comprised of members from the Alberta Provincial Hematology Tumour Team, external participants identified by the Working Group Lead, and a methodologist from the Guideline Resource Unit. The draft guideline was externally reviewed and endorsed by members of the Alberta Provincial Hematology Tumour Team who were not involved in the guideline’s development, including surgical oncologists, radiation oncologists, medical oncologists, hematologists, nurses, pathologists, and pharmacists. A detailed description of the methodology followed during the guideline development process can be found in the Guideline Resource Unit Handbook.

This guideline was originally developed in March 2006.

Maintenance
A formal review of the guideline will be conducted in 2024. If critical new evidence is brought forward before that time, however, the guideline working group members will revise and update the document accordingly.

Abbreviations
- 2-CDA, 2-chlorodeoxyadenosine; ABVD, adriamycin + bleomycin + vinblastine + dacarbazine; ALCCL, anaplastic large cell lymphoma; ALK, anaplastic lymphoma kinase; ALT, alanine transaminase; AML, acute myeloid leukemia; ATCL, adult T-cell lymphoma; BCNU, carmustine; BEACOPP, bleomycin + etoposide + adriamycin + cyclophosphamide + vincristine + procarbazine + prednisone; BEAM, BCNU + etoposide + cytarabine + melphalan; BL, Burkitt lymphoma; BMT, bone marrow transplant; B-R, Bendamustine-rituximab; CALGB, Cancer and Leukemia Group B; CAP, cyclophosphamide + adriamycin + prednisone; CBV, cyclophosphamide + BCNU + etoposide; CEC, cyclophosphamide + lomustine + vindesine + melphalan + prednisone + epidoxorubicin + vincristine + procarbazine + vinblastine + bleomycin; CEPP, cyclophosphamide + etoposide + procarbazine + prednisone; CHlVPP, chlorambucil + vinblastine + procarbazine + prednisone; CHOP, cyclophosphamide + adriamycin + vincristine + prednisone; CHOP, cyclophosphamide + adriamycin + vincristine + etoposide + prednisone; CL, chronic lymphocytic leukemia; CMED, cyclophosphamide + etoposide + methotrexate + dexamethasone + leucovorin + GC; CNS, central nervous system; CODOX-M, cyclophosphamide + vincristine + adriamycin + methotrexate; COPP, cyclophosphamide + vincristine + procarbazine + prednisone; CR, complete remission; CS, clinical stage; CSF, cerebrospinal fluid; CT, computed tomography scan; CTCL, cutaneous T-cell lymphoma; CVAD, cyclophosphamide + vincreistine + adriamycin + dexamethasone; CVP, cyclophosphamide + vincristine + prednisone; DHAP, dexamethasone + cytarabine + cisplatin; DICE, dexamethasone + ifosfamide + cisplatin + etoposide + mesna; DICEP, dexamethasone + cyclophosphamide + etoposide + cisplatin + mesna + Septra; DLBCL, diffuse large B-cell lymphoma; DLCO, diffusing capacity of the lung for carbon monoxide; EBER, Epstein-Barr virus encoded ribonucleic acid; EBV, Epstein-Barr virus; ECOG, Eastern Cooperative Oncology Group; ENS, extracapsular neoplastic spread; ENT, ear, nose, and throat; ESHAP, etoposide + methylprednisolone + cytarabine + cisplatin; ESR, erythrocyte sedimentation rate; FC, fludarabine + cyclophosphamide; FEV1, forced expiratory volume in one second; FISH, fluorescent in situ hybridization; FLIPI, Follicular Lymphoma International Prognostic Index; FND, fludarabine + mitoxantrone + dexamethasone; FVC, forced vital capacity; G-CSF, granulocyte-colony stimulating factor; GDP, gemcitabine + dexamethasone + cisplatin; GHSG, German Hodgkin Study Group; GMALL, German multicentre adult acute lymphoblastic leukemia protocol; H&E, hematoxylin and eosin stain; HAART, highly active antiretroviral therapy; HAMA, human anti-mouse antibodies; HDCT, high dose chemotherapy; HL, Hodgkin lymphoma; HP-Pac, lansoprazole + clarithromycin + amoxicillin; HSCT, hematopoietic stem cell transplantation; HVS, hyperviscosity syndrome; ICE, ifosfamide + carboplatin + etoposide; IELSG, International Extranodal Lymphoma Study Group; IFRT, involved field radiation therapy; IMRT, intensity-modulated radiation therapy; IP/IPS, International Prognostic Index/Score; IV, intravenous; IVAC, ifosfamide + mesna + etoposide + cytarabine; IVE, ifosfamide + vincristine + etoposide; KPS, Karnofsky Performance Status Scale; LDH, lactate dehydrogenase test; LPL, lymphoplasmacytic lymphoma; LVEF, left ventricular ejection fraction; MACOP-B, methotrexate + adriamycin + cyclophosphamide + vincristine + bleomycin + prednisone; MALT, mucosa-associated lymphoid tissue; MDS, myelodysplastic syndrome; MEP, mitomycin C + etoposide + cisplatin; MTD, maximum transthoracic diameter; MTX, methotrexate; MUGA, multiple gated acquisition scan; NHL, non-Hodgkin lymphoma; NK, natural killer; NLPHD, nodular lymphocyte predominant Hodgkin disease; OS, overall survival; PCNSL, primary central nervous system lymphoma; PCP, Pneumocystis jiroveci pneumonia; PET, positron emission tomography; PFS, progression-free survival; PFT, pulmonary function test; POMP, mercaptopurine + vincristine + methotrexate + prednisone; PR, partial response; PTCL, peripheral T-cell lymphoma; PTLD, post-transplant lymphoproliferative disorder; PUVA, psoralen + ultraviolet A radiation; Ritux, rituximab; R-CHOP, rituximab + cyclophosphamide + adriamycin + vincristine + prednisone; R-CVP, rituximab + cyclophosphamide + vincristine + prednisone; R-FCM, fludarabine + cyclophosphamide +...
mitoxantrone + rituximab; RIT, radioimmunoconjugate therapy; RR, response rate; RT, radiotherapy; SBFT, small bowel follow-through (test); SCT, stem cell transplant; SD, stable disease; SLE, systemic lupus erythematosus; SLL, small lymphocytic lymphoma; SOT, solid organ transplant; STNI, subtotal nodal irradiation; TBuC, thiopeta + busulfan + cyclophosphamide; TBI, total body irradiation; TRM, Transplant-related mortality; TSH, thyroid stimulating hormone; UGI, upper gastrointestinal series (test); VIPD, etoposide + ifosfamide + cisplatin + dexamethasone; WHO, World Health Organization; WM, Waldenström macroglobulinemia.

Disclaimer The recommendations contained in this guideline are a consensus of the Alberta Hematology Tumour Team and are a synthesis of currently accepted approaches to management, derived from a review of relevant scientific literature. Clinicians applying these guidelines should, in consultation with the patient, use independent medical judgment in the context of individual clinical circumstances to direct care.

Copyright © (2023) Alberta Health Services
This copyright work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivative 4.0 International license. You are free to copy and distribute the work including in other media and formats for non-commercial purposes, as long as you attribute the work to Alberta Health Services, do not adapt the work, and abide by the other license terms. To view a copy of this license, see https://creativecommons.org/licenses/by-nc-nd/4.0/. The license does not apply to AHS trademarks, logos or content for which Alberta Health Services is not the copyright owner.

Funding Source
Financial support for the development of CancerCare Alberta’s evidence-based clinical practice guidelines and supporting materials comes from the CancerCare Alberta operating budget; no outside commercial funding was received to support the development of this document. All cancer drugs described in the guidelines are funded in accordance with the Outpatient Cancer Drug Benefit Program, at no charge, to eligible residents of Alberta, unless otherwise explicitly stated. For a complete list of funded drugs, specific indications, and approved prescribers, please refer to the Outpatient Cancer Drug Benefit Program Master List.

Citation