Table of Contents

Background
Guideline Questions
Search Strategy
Target Population
Discussion
 I. Diagnosis and Pathologic Classifications
 II. Staging
 III. Treatment of Non-Hodgkin Lymphomas
 IV. Cutaneous Lymphoma
 V. Hodgkin Lymphoma
 VI. HDCT and Hematopoietic Stem Cell Transplantation for Lymphoma
 VII. Supportive Care in the Treatment of Lymphoma
 VIII. Follow-Up Care in the Treatment of Lymphoma

Appendix A (Chemotherapy Regimens)
Appendix B: General Radiotherapy Guidelines
Appendix C: Prognostic Models
Appendix D: Lymphoma Response Criteria
Appendix E: New Lymphoma Patient Data Sheet
Appendix F: Ideal Body Weight
Glossary of Abbreviations
Dissemination
Maintenance
Background

Lymphomas encompass a group of lymphoproliferative malignant diseases that originate from T- and B-cells in the lymphatic system. Traditionally, lymphomas have been subcategorized into two groups: Hodgkin lymphoma and non-Hodgkin lymphoma. It is now known however, that Hodgkin lymphoma is simply one of the numerous varieties of lymphoma, and that non-Hodgkin lymphoma is a fairly meaningless term, representing all of the other subtypes of this disease.

Non-Hodgkin lymphoma involves a heterogeneous group of over 40 lymphoproliferative malignancies with diverse patterns of behaviours and responses to treatments. Non-Hodgkin lymphoma is much less predictable than Hodgkin lymphoma and prognosis depends on the histologic type, stage, and treatment. In Canadian males and females, the incidence rates for non-Hodgkin lymphoma showed a marked increase by approximately 50% between 1978 and the late 1990s, but have since stabilized\(^1\). Mortality rates have followed a similar pattern. The clearest risk factor for the disease is immunosuppression associated with HIV infection, or medications used to prevent rejection in organ transplantation. Other factors that increase risk of non-Hodgkin lymphoma are poorly understood but may include occupational exposures to pesticides, herbicides, and dioxins, as well as chronic immune stimulation associated with autoimmune disorders (e.g. thyroiditis, Sjogren’s Syndrome, SLE) or infections (e.g. *Helicobacter pylori* gastritis, hepatitis C virus)\(^2\). In 2015, it is estimated that 8200 new cases of non-Hodgkin lymphoma will be diagnosed in Canada, and 2650 deaths will occur, making non-Hodgkin lymphoma the sixth most common cause of cancer-related death in Canada\(^3\).

Hodgkin lymphoma is a malignancy characterized histopathologically by the presence of Reed-Sternberg cells in the appropriate cellular background. Although rare, Hodgkin lymphoma is one of the best-characterized malignancies of the lymphatic system and one of the most readily curable forms of malignant disease.\(^2\) The incidence rate has remained fairly steady over time, it is estimated that approximately 1000 new cases of Hodgkin lymphoma are diagnosed in Canada each year\(^3\). It is important to note that lymphoma also represents the most commonly diagnosed non-epithelial cancers in adolescents and young adults in Canada. Between 1992 and 2005, 5577 new cases of Hodgkin and non-Hodgkin lymphoma were diagnosed in Canadians aged 15-29 years\(^1\). The following guidelines do not address lymphoma in the pediatric or adolescent populations.

Guideline Questions

- What are the diagnostic criteria for the most common lymphomas?
- What are the staging and re-staging procedures for Hodgkin and non-Hodgkin lymphomas?
- What are the recommended treatment and management options for Hodgkin and non-Hodgkin lymphomas?
- What are the recommended follow-up procedures for patients with malignant Hodgkin and non-Hodgkin lymphoma?
Search Strategy

Medical journal articles were searched using Medline (1950 to October Week 1, 2015), EMBASE (1980 to October Week 1, 2015), Cochrane Database of Systematic Reviews (3rd Quarter, 2015), and PubMed electronic databases. An updated review of the relevant existing practice guidelines for lymphoma was also conducted by accessing the websites of the National Comprehensive Cancer Network (NCCN), Cancer Care Ontario (CCO), the British Columbia Cancer Agency (BCCA), the European Society for Medical Oncology (ESMO), and the British Committee for Standards in Haematology.

Target Population

The following guidelines apply to adults over 18 years of age. Different principles may apply to pediatric and adolescent patients.

References

I. Diagnosis and Pathologic Classification

An excisional lymph node biopsy of the largest regionally involved lymph node is the optimal specimen for initial diagnostic assessment. Similarly, a sizable biopsy from the organ of origin in extranodal lymphomas is also suitable. Compelling clinical contraindications to an open biopsy should be present before considering any other options. A careful clinical examination or radiological investigations for more accessible or palpable pathologic adenopathy could be useful in decision making prior to opting for a lesser diagnostic specimen. Fine needle aspirate biopsies are inadequate for the initial diagnosis of lymphoma. These latter specimens may provide adequate material for evaluating possible relapse, clarification of staging at questionable sites and as a source of additional specimen where required for further special testing or research. Occasionally, a generous core needle biopsy comprising many core samples with sufficient material to perform the appropriate ancillary techniques required for diagnostic assessment (immunohistochemistry, flow cytometry, PCR for IgH and TCR gene rearrangements, and FISH for major translocations) may supply adequate tissue, in cases when a lymph node is not easily accessible for excisional or incisional biopsy. A reference lymphoma pathologist should confirm lymphoma diagnoses in each and every case. This is particularly important in cases when only a core needle biopsy is available, and whenever requested by the treating clinician.

Table 1 describes the histologic subclassification of the malignant lymphomas, and is an adaptation of the most recent WHO classification. This classification is based on the light microscopic interpretation complemented by special stains, immunophenotyping, cytogenetics and other ancillary information as available. The specific lymphomas are divided into three major groups, according to the degree of clinical aggressiveness, for treatment planning. All B-cell lymphomas should be immuno-phenotyped to determine if they are CD20 positive.
Table 1. Lymphoma classification.

<table>
<thead>
<tr>
<th>Indolent</th>
<th>T-cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follicular, grades 1-2, 3a</td>
<td>Mycosis fungoides /Sezary syndrome</td>
</tr>
<tr>
<td>Small lymphocytic Lymphoma/Chronic Lymphocytic Leukemia</td>
<td>Primary cutaneous, CD30+</td>
</tr>
<tr>
<td>Marginal zone, extranodal (MALT)</td>
<td>Primary cutaneous perioheral T-cell lymphoma</td>
</tr>
<tr>
<td>Splenic marginal zone</td>
<td>PTCL, CD30-</td>
</tr>
<tr>
<td>Marginal zone, nodal (monocytoid B-cell)</td>
<td>T-cell large granular lymphocytic leukemia</td>
</tr>
<tr>
<td>Lymphoplasmacytic (Waldenström’s macroglobulinemia)</td>
<td></td>
</tr>
<tr>
<td>Primary cutaneous, follicle centre</td>
<td></td>
</tr>
<tr>
<td>Hairy cell leukemia</td>
<td></td>
</tr>
<tr>
<td>Nodular lymphocyte predominant Hodgkin Lymphoma</td>
<td></td>
</tr>
<tr>
<td>Mantle cell (can be aggressive)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aggressive</th>
<th>T-cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffuse large B-cell</td>
<td>Peripheral T-cell, unspecified</td>
</tr>
<tr>
<td>T-cell/histocyte-rich DLBCL</td>
<td>Angioimmunoblastic (AITL. formerly AILD)</td>
</tr>
<tr>
<td>Primary DLBCL of the CNS</td>
<td>Enteropathy associated T-cell</td>
</tr>
<tr>
<td>Primary cutaneous DLBCL, leg-type</td>
<td>Hepatosplenic T-cell</td>
</tr>
<tr>
<td>EBV-positive DLBCL of the elderly</td>
<td>Subcutaneous panniculitis-like</td>
</tr>
<tr>
<td>DLBCL associated with chronic inflammation</td>
<td>Anaplastic large cell (CD30+) ALK+</td>
</tr>
<tr>
<td>Lymphomatoid granulomatosis</td>
<td>Anaplastic large cell (CD30+) ALK-</td>
</tr>
<tr>
<td>Primary mediastinal large B-cell</td>
<td>Extranodal NK/T-cell, nasal type</td>
</tr>
<tr>
<td>Intravascular large B-cell</td>
<td></td>
</tr>
<tr>
<td>ALK positive large B-cell</td>
<td></td>
</tr>
<tr>
<td>Plasmablastic lymphoma</td>
<td></td>
</tr>
<tr>
<td>LBCL in HHV8-associated Castleman disease</td>
<td></td>
</tr>
<tr>
<td>Primary effusion lymphoma</td>
<td></td>
</tr>
<tr>
<td>Follicular grade 3b (large cell)</td>
<td></td>
</tr>
<tr>
<td>Classical Hodgkin lymphoma</td>
<td></td>
</tr>
<tr>
<td>⇒ Nodular sclerosis</td>
<td>T lymphoblastic leukemia/lymphoma</td>
</tr>
<tr>
<td>⇒ Mixed cellularity</td>
<td>Adult T-cell leukemia/lymphoma (ATLL)</td>
</tr>
<tr>
<td>⇒ Lymphocyte rich</td>
<td>T prolymphocytic leukemia</td>
</tr>
<tr>
<td>⇒ Lymphocyte depleted</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Special</th>
<th>T-cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burkitt lymphoma</td>
<td></td>
</tr>
<tr>
<td>Intermediate between DLBCL and BL</td>
<td></td>
</tr>
<tr>
<td>Intermediate between DLBCL and Hodgkin lymphoma</td>
<td></td>
</tr>
<tr>
<td>B lymphoblastic leukemia/lymphoma</td>
<td></td>
</tr>
<tr>
<td>B prolymphocytic leukemia</td>
<td></td>
</tr>
<tr>
<td>Lymphomas associated with HIV infection</td>
<td>T lymphoblastic leukemia/lymphoma</td>
</tr>
<tr>
<td>Lymphomas associated with primary immune disorders</td>
<td>Adult T-cell leukemia/lymphoma (ATLL)</td>
</tr>
<tr>
<td>Post-transplant lymphoproliferative disorders (PTLD)</td>
<td>T prolymphocytic leukemia</td>
</tr>
<tr>
<td>Plasmacytic hyperplasia and infectious</td>
<td></td>
</tr>
<tr>
<td>mononucleosis-like PTLD</td>
<td></td>
</tr>
<tr>
<td>Polymorphic PTLD</td>
<td></td>
</tr>
<tr>
<td>Monomorphic PTLD</td>
<td></td>
</tr>
<tr>
<td>Classical Hodgkin-type PTLD</td>
<td></td>
</tr>
<tr>
<td>Other iatrogenic immunodeficiency-associated lymphomas</td>
<td></td>
</tr>
</tbody>
</table>

Required Immunohistochemical and Ancillary Testing for Lymphoma

In general, guidelines for using the various ancillary methods, including immunohistochemical and fluorescence in situ hybridization (FISH) testing as outlined in the most recent version of the World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues should be followed so as to confirm a specific diagnosis and provide necessary prognostic and/or predictive information\(^6\). In addition, the following are recommended by the Alberta Provincial Hematology Tumour Team\(^7,8\):

1. **Classical Hodgkin Lymphoma**: The immunohistochemical panel may include CD45/CD3/CD20/CD30/CD15/ PAX5/MUM1 and should be selected on a case by case basis at the discretion of the hematopathologist. EBV studies by in situ hybridization (EBER) may be considered if difficulty exists diagnostically, as most cases of the mixed-cellularity subtype of classical Hodgkin lymphoma are EBER positive.

2. **Diffuse Large B-Cell Lymphoma (DLBCL):**
 - Immunohistochemical (IHC) panels to distinguish between Activated B Cell (ABC) type and Germinal Centre B-cell (GCB) cell of origin (COO) types have limitations (regardless of which algorithm is employed) when compared to gene expression profiling\(^8,9\). However, GCB vs non-GCB COO by IHC does correlate with survival rates following RCHOP chemotherapy, and therefore adds prognostic information when managing DLBCL. The Alberta hematopathologists currently use a simple algorithm published by Hans et al, requiring IHC stains for CD10, BCL6 and MUM1, in which CD10+ or BCL6+/ MUM1- cases are designated as GCB COO, whereas cases negative for negative/BCL6+/MUM1+ phenotype are considered to have a non-GCB COO.
 - EBER and CD5 expression confer worse prognosis, and may be used to identify various clinical-pathological entities with distinct implications. Determining CD5 expression should be considered on all DLBCL cases. EBER should be performed in patients with immune suppression related lymphomas, or those who possibly have EBV-related DLBCL (consider past the age of 50)\(^10\).
 - Rearrangements of the C-MYC gene as determined by FISH, especially in association with BCL2 and/or BCL6 (so called "double hit" or "triple hit" disease) are associated with very poor outcomes following R-CHOP therapy, as well as high rates of central nervous system relapse. Patients with a double-hit or triple-hit lymphoma under age 70 years should receive more aggressive therapy and possibly stem cell transplantation. Though it represents approximately only 5-10% of DLBCL cases\(^11\), it is very important to recognize these patients, and therefore, MYC rearrangement testing by FISH is to be performed on all patients younger than 70 y.o. with the appropriate lymphoma histology, i.e. DLBCL or lymphoma that are so called "unclassifiable" with intermediate morphological features between DLBCL and Burkitt. If MYC is rearranged, the case should also undergo BCL2 and BCL6 rearrangement testing by FISH. MYC and BCL2 test results are required within 2 weeks of diagnoses for all new patients within the appropriate diagnostic category and age group. FISH testing may also be performed in select instances at
the discretion of the reporting hematopathologist if such studies are deemed diagnostically useful.

- Immunohistochemical studies cannot be used as a surrogate for MYC rearrangement.
- However, the detection of MYC and BCL2 concurrent overexpression by IHC in so-called “dual expressor” DLBCL, identifies a numerically significant subset of the DLBCL with potentially similar aggressive behavior compared to double-hit lymphoma cases, but representing a distinct group of patients (more often an ABC subtype as opposed to double hit DLBCL which are usually GCB). This group is also associated with a high rate of CNS relapse11. Therefore, provided adequate benchmarks and interpretation standards can be established for reproducibility, IHC for MYC and BCL2 expression should also be strongly considered on all DLBCL cases8,12.

3. **Follicular Lymphoma**: must document grade (1-2, 3a or 3b), because all grade 3b should receive R-CHOP rather than other chemotherapy regimens. Also, if a diffuse pattern is present, this should be specified and a relative proportion noted, as outlined in the WHO Classification.

4. **Peripheral T-Cell Lymphoma**: cytotoxic T-cell markers (CD8/CD57/Granzyme B) correlate with poor prognosis and should be considered. Notably, however, peripheral T cell lymphomas are not classified on the basis of these phenotypic markers. EBV studies by in situ hybridization (EBER) should be performed in cases where angioimmunoblastic T cell lymphoma (AITL) and extranodal T/NK cell lymphoma, nasal type enter in the differential diagnosis.

5. **Mantle Cell Lymphoma**: Evidence of CyclinD1 deregulation confirmed by IHC (positive staining for CyclinD1) and/or FISH (positive for t(11;14)) is needed to confirm the diagnosis, provided other morphophenotypic findings are consistent with the diagnosis. Poor prognostic features must be mentioned in the report, including blastoid and pleomorphic morphologic variants. The proliferation index as measured by Ki67 or Mib-1 (used to calculate MIPI score) is to be reported. In cases where it is difficult to differentiate MCL from CLL, flow cytometry for CD200 and IHC for SOX11 may be performed13. For patients who are deemed transplant-eligible (i.e. age <65 and fit for intensive therapy), \textit{TP53} mutational testing should be performed at time of diagnosis to identify high-risk patients more appropriate for allogeneic stem cell transplantation 14.

References

II. Staging ¹⁻¹²

Mandatory Staging Procedures

- Pathology review whenever possible (essential for core needle biopsies)
- Complete history and physical examination stating ECOG Performance Score, B symptoms
- CBC & differential, creatinine, electrolytes, Alk P, ALT, LDH, bilirubin, total protein, albumin, calcium
- Hepatitis B Surface Antigen (HBsAg), Hepatitis B Surface Antibody (anti-HBs), and Hepatitis B Core Antibody (total anti-HBc) must be done prior to initiating chemo/immunotherapy. Patients who are HBsAg positive are either acutely or chronically infected and require consultation with Hepatology. Patients who are HBsAg negative/anti-HBc positive (regardless of anti-HBs titre levels) and are going to be treated with B-cell depleting therapy (e.g. rituximab) should receive prophylactic therapy with entecavir or tenofovir. Those who are HBsAg negative/anti-HBc positive and fall under low or moderate risk as per Table 1 do not require prophylaxis and should undergo serial HBV DNA testing q6-12 months and serial ALT testing q3 months while on immunosuppressive therapy (see Figure 1). Hepatitis B prophylactic therapy should be continued for at least 6 months following the completion of immunosuppressive therapy, except for those treated with anti-CD20 agents who should continue for at least 12-18 months due to the lag in B-cell function recovery.¹³⁻¹⁷

Table 1: Risk of HBV reactivation with immunosuppression and chemotherapy in HBsAg-positive and HBsAg-negative/anti-HBc-positive patients.

<table>
<thead>
<tr>
<th>Risk group and HBV serology</th>
<th>Immunosuppressive or chemotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-risk group (>10%)</td>
<td></td>
</tr>
<tr>
<td>HBsAg positive</td>
<td>• B-cell depleting agents such as</td>
</tr>
<tr>
<td>OR</td>
<td>rituximab and obinutuzumab</td>
</tr>
<tr>
<td>HBsAg negative and anti-HBc positive (high risk regardless of anti-HBs titre levels)</td>
<td>• Anthracycline derivatives such as doxorubicin and epirubicin</td>
</tr>
<tr>
<td></td>
<td>• Corticosteroid therapy for ≥ 4 weeks (prednisone equivalent > 10-20 mg/day)</td>
</tr>
<tr>
<td>Moderate-risk group (1%-10%)</td>
<td></td>
</tr>
<tr>
<td>HBsAg positive</td>
<td>• TNF-α inhibitors: etanercept,</td>
</tr>
<tr>
<td>OR</td>
<td>adalimumab, certolizumab, infliximab</td>
</tr>
<tr>
<td>HBsAg negative and anti-HBc positive (may be lower risk and monitoring may be sufficient if high anti-HBs titres > 100 IU/L)</td>
<td>• Other cytokine inhibitors and integrin inhibitors: abatacept, ustekinumab, natalizumab, vedolizumab</td>
</tr>
<tr>
<td></td>
<td>• Tyrosine kinase inhibitors: imatinib,</td>
</tr>
<tr>
<td>HBsAg positive</td>
<td>• Corticosteroid therapy for ≥ 4 weeks (prednisone equivalent < 10 mg/day)</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>HBsAg negative and anti-HBc positive (may be lower risk and monitoring may be sufficient if high anti-HBs titres > 100 IU/L)</td>
<td>• Corticosteroid therapy for ≥ 4 weeks (prednisone equivalent > 10-20 mg/day) • Anthracycline derivatives: doxorubicin and epirubicin</td>
</tr>
<tr>
<td>Low-risk group (<1%)</td>
<td></td>
</tr>
<tr>
<td>HBsAg positive OR HBsAg negative and anti-HBc positive (low risk especially if high anti-HBs titres > 100 IU/L)</td>
<td>• Traditional immunosuppressive agents: azathioprine, 6-mercaptopurine, methotrexate • Intra-articular corticosteroids • Corticosteroid therapy for ≤ 1 week</td>
</tr>
<tr>
<td>HBsAg negative and anti-HBc positive (low risk especially if high anti-HBs titres > 100 IU/L)</td>
<td>• Corticosteroid therapy for ≥ 4 weeks (prednisone equivalent < 10 mg/day)</td>
</tr>
</tbody>
</table>

Adapted from Coffin, Carla S., et al. 13

Anti-HBc = antibody to HBV core; anti-HBs = antibody to HBsAg; HBsAg = hepatitis B surface antigen; HBV = hepatitis B virus; TNF = tumour necrosing factor.

- ESR (for early stage Hodgkin lymphoma)
- Beta-2-microglobulin
- Serum protein electrophoresis and quantitative IgG, IgA, and IgM for indolent B-cell lymphomas
- Pregnancy test: if at risk
- Bone marrow aspiration and 2cm biopsy (BMasp/bx) with flow cytometry for patients with indolent B-cell and a marrow biopsy (without flow cytometry) for aggressive T-cell non-Hodgkin lymphomas. BMasp/bx is not required for Hodgkin lymphoma or DLBCL if a staging PET/CT is performed.
- FDG-PET and Diagnostic CT NeckChestAbdomenPelvis for FDG-avid, nodal lymphomas, which includes all histologies except chronic lymphocytic leukemia/small lymphocytic lymphoma, lymphoplasmacytic lymphoma, mycosis fungoides, and marginal zone NHLs (unless there is a suspicion of aggressive transformation). Nodal lymphomas that are not FDG avid should have a staging diagnostic CT scan of NCAP. PET-CT is especially important for patients who otherwise have non-bulky, stage I-IIA lymphoma, and are being considered for involved field radiation (IFRT) following abbreviated (or no) chemotherapy. PET/CT is not necessarily required for Follicular
Lymphoma if the results will not change management, particularly for a patient who will likely undergo watchful waiting.

Table 2. Selected non-routine tests and required presentation

<table>
<thead>
<tr>
<th>Test</th>
<th>Required Presentation/Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSF and MRI Brain with gad</td>
<td>Brain, intraocular, epidural, testicular, paranasal sinus, kidney, adrenal, or symptoms referable to CNS or nerve roots. Consider for elevated LDH, ECOG 2-4, and >1 ENS.</td>
</tr>
<tr>
<td>ENT exam</td>
<td>Suprahyoid cervical lymph node or stomach</td>
</tr>
<tr>
<td>UGI & SBFT</td>
<td>Waldeyer’s ring involvement</td>
</tr>
<tr>
<td>Ophthalmologic (slit lamp) exam</td>
<td>Primary brain lymphoma</td>
</tr>
<tr>
<td>HIV serology</td>
<td>If any HIV risk factors. Lymphomas with unusual presentations or aggressiveness including Primary CNS.</td>
</tr>
<tr>
<td>Cardio-oncology imaging (MR or Echocardiogram)</td>
<td>All patients who are planned to receive anthracycline or high dose chemotherapy (esp, > 50 years of age, or with history of hypertension or cardiopulmonary disease)</td>
</tr>
<tr>
<td>Pulmonary function tests</td>
<td>if bleomycin chemotherapy is planned</td>
</tr>
</tbody>
</table>

Table 3. Staging system

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I</td>
<td>Single lymph node region (I) or one extralymphatic organ (IE)</td>
</tr>
<tr>
<td>Stage II</td>
<td>Two or more lymph node regions, same side of the diaphragm (II), or local extralymphatic extension plus lymph nodes, same side of the diaphragm (IIIE)</td>
</tr>
<tr>
<td>Stage III</td>
<td>Lymph node regions on both sides of the diaphragm either alone (III) or with local extra-lymphatic extension (IIIE)</td>
</tr>
<tr>
<td>Stage IV</td>
<td>Diffuse involvement of one or more extralymphatic organs or sites</td>
</tr>
<tr>
<td></td>
<td>• A: No B symptoms</td>
</tr>
<tr>
<td></td>
<td>• B: at least one of the following: unexplained weight loss >10% baseline within 6 months of staging, unexplained fever >38°C, or drenching night sweats</td>
</tr>
</tbody>
</table>

For treatment planning, patients are divided into two groups by stage:

1. **Limited Stage:** Non-bulky stage IA(E) or IIA(E) (≤ 3 adjacent lymph node regions)
2. **Advanced Stage:**
 • Stage II involving >3 or non-adjacent lymph node regions
 • or stage III or IV
 • or B symptoms
 • or bulky tumour mass (≥10cm)
Restaging Schedule

1. The following are to be performed prior to each chemotherapy treatment:
 - Clinical parameters: brief history and physical examination, toxicity notation, ECOG status
 - Bloodwork:
 - CBC/differential/platelet
 - also consider EP/creatinine and LFTs

2. Requirements for CT scanning of chest/abdomen/pelvis:
 - Routine CT scanning:
 - after 3 months (4 cycles) of therapy and again after completion of all therapy for Non-Hodgkin Lymphomas
 - if a residual mass is seen on the CT after completion of all therapy, then repeat a PET/CT for aggressive lymphoma to determine partial or complete remission.
 - a repeat CT scan should be considered 6-12 months post-treatment; otherwise, no further routine CT scans are required
 - Hodgkin lymphoma patients should undergo a PET/CT after 2 cycles ABVD (rather than CT after 4 cycles) as outlined below in the Hodgkin Lymphoma treatment guidelines.
 - Other requirements for CT scanning:
 - as indicated to investigate clinical signs or symptoms, or abnormal laboratory tests

3. Bone marrow aspirate & biopsy (with sample sent for flow cytometry):
 - Repeat for transplant-eligible patients with aggressive histology lymphomas who otherwise are in complete remission after completion of chemotherapy, if marrow was positive at diagnosis

4. PET/CT Imaging:
 - Assessment of residual radiographic or clinical abnormalities of uncertain significance at the time of re-staging following completion of therapy.
 - Hodgkin lymphoma patients should undergo a PET/CT after 2 cycles ABVD (rather than CT after 4 cycles) as outlined below in the Hodgkin Lymphoma treatment guidelines.

Table 4. PET result significance and treatment recommendations.

<table>
<thead>
<tr>
<th>PET Result</th>
<th>Final Response</th>
<th>Treatment Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative</td>
<td>Complete</td>
<td>Observation</td>
</tr>
<tr>
<td>Positive</td>
<td>Partial</td>
<td>Consider biopsy, IFRT, or HDCT/ASCT versus observation</td>
</tr>
</tbody>
</table>
References

III. Treatment of Non-Hodgkin Lymphomas

Treatment of non-Hodgkin lymphomas is based on histologic subtype, extent of disease, and age of the patient. In the case of discordant (2 separate sites of disease with differing types of lymphoma), composite (1 site of disease with 2 discrete types of lymphoma at that site), or transformed (a second lymphoma developing out of a background of previously known lymphoma) lymphoma, treatment must be directed at the most aggressive phase of the disease. Approaches outlined for aggressive lymphomas are generally applicable to both B- and T-cell types. However, treatments for lymphomas presenting at special sites, poor prognosis lymphomas in younger patients, and lymphomas arising in association with immunodeficiency (HIV, post-organ transplant) are outlined in the section titled “Special Problems in Lymphoma Management” below.

Diffuse Large B-Cell Lymphoma (DLBCL)

Table 1. Initial therapy of DLBCL/aggressive CD20+ lymphomas without MYC and BCL2 and/or BCL6 rearrangement by FISH.

<table>
<thead>
<tr>
<th>Stage</th>
<th># Risk Factors1,2</th>
<th>Treatment3</th>
</tr>
</thead>
</table>
| Limited stage defined by PET with bulk <10cm | sm-IPI = 0, sm-IPI = 1 due to age >60 or stage II | - R-CHOP x 4 cycles if CR by PET/CT 14-21 days after 3rd cycle
- R-CHOP x 6 with IFRT (30-35 Gy) if PR by PET/CT after 3rd cycle
- R-CHOP x 3 plus IFRT for patients unable to tolerate more than 3 cycles
- R-CHOP x 6 for patients unable to undergo interim PET or R-CHOPx4 for patients meeting FLYER criteria (age 18-60, stage I-II, normal LDH, ECOG 0-1, bulk <7.5 cm) |
| Limited stage with bulk <10cm | sm-IPI = 2-4, sm-IPI = 1 due to elevated LDH or ECOG >1 | - R-CHOP x 6 cycles with no IFRT if CR by PET/CT 14-21 days after 3rd cycle
- R-CHOP x 6 cycles plus IFRT (30-35 Gy) if only PR by PET/CT after 3rd cycle
- RCHOP x 3 plus IFRT for patients unable to tolerate more than 3 cycles |
| Advanced 4, or limited stage with bulk ≥10 cm | IPI 0-3 or age >70 yrs or unfit | - R-CHOP x 6 cycles possibly followed by IFRT (30-35 Gy) if localized non-progressing PET+ residual disease by PET/CT 21-28 days after 6th cycle RCHOP |
| Advanced 4 | IPI 4-5 and age <70 years | Acceptable alternatives:
- R-CHOP x 6, then high-dose chemotherapy/ASCT if no CR or relapse
- R-CHOP x 4-6 then high-dose chemotherapy/ASCT in first remission. Especially recommended if PET+ after RCHOPx4.
- IFRT (30-35 Gy) if localized non-progressing PET+ residual disease by PET/CT 21-28 days after 6th cycle RCHOP |

1. Stage-modified IPI (sm-IPI) Risk Factors for Limited Stage: increased LDH, stage II, ECOG performance status 2-4, age>60 years.
2. IPI Risk Factors for Advanced Stage: increased LDH, stage III/IV, >1 Extranodal Site, ECOG 2-4, age>60 years.
3. R-CEOP (with etoposide 50 mg/m2 IV day 1 and 100 mg/m2 po days 2-3) can be used for DLBCL patients who have reduced left ventricular ejection fraction or prior maximum cumulative anthracycline exposure (Blood Adv 2021;5(5):1483).
4. The use of R-CEOP should be limited to patients with an absolute contraindication to anthracyclines, as an Alberta study found that R-CEOP was associated with inferior 4-year PFS (32% vs 52%) and OS (39% vs 59%) compared to R-CHOP (Leuk Lymph 2022;63(3):583)
4. For patients >age 60 years, 3-7 days of prednisone 100mg/day pre-R-CHOP as well as G-CSF prophylaxis are recommended to decrease toxicity.

Treatment of Limited-Stage DLBCL

Limited-stage DLBCL is associated with favorable outcomes with long-term survival rates up to 80%, although a persistent pattern of late relapses has been described in up to 20-30% of patients. The stage-modified IPI score risk stratifies patients according to the following factors: age >60, stage II, elevated LDH, ECOG >1. In the pre-rituximab era, the phase III SWOG S8736 trial reported superior PFS and OS with CHOP×3 plus RT versus CHOP×8; however, due to the occurrence of late relapses and treatment complications, there was no difference in PFS or OS between the two strategies with long-term follow-up. In the rituximab era, the MInT trial established R-CHOP x6 as the standard of care for most patients with limited-stage DLBCL. Given the favorable outcomes of limited-stage DLBCL, recent studies have assessed the role for treatment de-escalation to minimize toxicity while preserving efficacy. The LYSAGOELAMS 02-03 trial of 334 patients with stage I-II non-bulky (<7cm) DLBCL demonstrated that R-CHOP alone is non-inferior to R-CHOP + RT if CR is achieved on interim PET after cycle 4; in addition, 4 cycles of R-CHOP was found to be sufficient for interim PET-negative patients with 0 sm-IPI risk factors (Blood 2018;131(2):174). The phase III FLYER trial found that 4 cycles of R-CHOP has reduced toxicity and non-inferior efficacy compared to 6 cycles for patients with stage I-II non-bulky (<7.5cm) DLBCL with no other sm-IPI risk factors. In addition, the phase II SWOG S1001 trial and real-world data from BC Cancer demonstrated excellent PFS rates with 4 cycles of R-CHOP if CR is achieved after cycle 3, even in patients with up to 2 sm-IPI risk factors (J Clin Oncol 2020;38(26):3003 & Blood 2019;134(S1):401). Finally, the LYSALNH 09-1B trial found that R-CHOP×4 is non-inferior to R-CHOP×6 if CR is achieved on interim PET after cycle 2 for patients with stage I-II DLCBL up to age 80 with normal LDH and ECOG 0-1. Together, these studies demonstrate that patients with 0-1 sm-IPI risk factors (age >60 or stage II disease) can be treated with 4 cycles of R-CHOP if they achieve CR on interim PET. Patients being considered for treatment de-escalation should undergo baseline PET rather than CT to ensure accurate staging. Higher-risk limited-stage patients with sm-IPI 2-4 or those with elevated LDH or ECOG >1 were not well-represented in the above trials and should continue to receive 6 cycles of R-CHOP if CR is achieved on interim PET. The optimal treatment of patients with PR on interim PET is unknown, but our preferred approach is R-CHOPx6 plus RT as this was shown to result in similar outcomes as interim PET-negative patients in the LYSAGOELEAMS 02-03 trial.

Role for Consolidative Radiation Therapy in DLBCL

As mentioned above, the only randomized trial of combined modality therapy versus chemoimmunotherapy alone in limited-stage DLBCL (LYSA/GOELEAMS 02-03) found the addition of RT did not improve outcomes over R-CHOP alone among patients achieving CR on interim PET. However, the administration of RT after 6 cycles of R-CHOP appeared to overcome the poor prognostic impact of a positive interim PET, as these patients experienced similar outcomes as interim PET-negative patients. For advanced-stage DLBCL, a large retrospective analysis from BC Cancer of 723 patients treated with R-CHOP x6 +/- consolidative RT to focal sites of PET+ disease at end-of-treatment found that patients achieving negative PET have excellent outcomes without RT, including those with bulky disease and skeletal involvement at diagnosis. In addition, patients with non-progressing PET+ disease treated with RT had outcomes approaching those of PET-negative patients, suggesting a potential benefit of RT. As such, we recommend consolidative RT only for patients with (1) limited-stage DLBCL with positive interim PET or (2) advanced-stage DLBCL with...
localized non-progressing PET+ residual disease on end of treatment PET. There is no evidence for improved PFS or OS when RT is used for patients who achieve CMR on restaging PET and therefore it is not recommended.

HDCT/ASCT as Part of Initial Therapy for DLBCL
Randomized phase 3 trials have not proven an OS benefit for first remission consolidation with ASCT compared to RCHOP alone for aaIPI=2-3 DLBCL patients. Most recently, Chiapella *et al.* (2017) evaluated Rituximab-dose-dense chemotherapy with or without HDCT/ASCT in 412 patients with aaIPI=2-3 DLBCL (DLCL04), and reported improved PFS but not OS with ASCT consolidation. This is similar to the US intergroup/NCIC study reported by Stiff *et al.* (2013), however, in the latter study, patients who had aaIPI=3 experienced statistically significant improvements in 2yr PFS (75% vs 43%) as well as OS (82% vs 64%) with ASCT compared to RCHOP alone, respectively. aaIPI does not adequately identify poor prognosis DLBCL in young patients, as evidenced by the OS of 75-80% for aaIPI=2 patients in the RCHOP-only arms of the US intergroup trial and the Italian DLCL04 trial. This is supported by unpublished retrospective Alberta population data from a 2013 analysis, wherein 112 HIV-, CNS- patients 18-65yo with IPI=3-5 DLBCL experienced 5yr OS of 68% with ASCT (n=37) vs 56% without ASCT (n=75), however, including 166 IPI=2-5 patients, the OS difference was not significantly different with (n=46) or without (n=120) ASCT (72% vs 64%). Newer methods of identifying poor prognosis DLBCL patients include the use of interim or final PET+ response to RCHOP, as well as cell of origin (COO) GCB vs non-GCB, and MYC/BCL2 expression. Ennishi *et al.* (2017) reported very poor outcomes (5yr TTP <30%) for GCB DLBCL patients associated with high IPI scores and BCL2 translocations, as well as ABC DLBCL associated with high IPI scores and BCL2 gain/expressions. In addition, several investigators have reported very low salvage rates for the use of ASCT for relapsed/refractory MYC/BCL2 dual protein expression DLBCL. However, determining COO by IHC algorithms is unreliable, and COO by nanostring Lymph2Cx GEP is not currently funded. Unpublished data for 237 patients aged 18-65 years with IPI=3-5 DLBCL treated in Alberta from 2006-2017 found a 5 year overall survival rate of 81% for 100 IPI=3 patients but only 63% for 137 IPI=4-5 patients. Only a minority had first remission ASCT consolidation therapy. This local real world experience suggests that 40% of IPI=4-5 DLBCL patients are not cured by induction RCHOP or subsequent salvage therapy with ASCT for relapsed/refractory disease. The Positron Emission Tomography–Guided Therapy of Aggressive Non-Hodgkin Lymphomas (PETAL) study reported 5yr event-free survival from the day of negative vs positive interim PET scanning (change SUVmax 66%) as follows: 80% vs 40% for IPI=0-1, 60% vs 40% for IPI=2, 60% vs 30% for IPI=3, and 40% vs 10% for IPI=4-5. In conclusion, patients who present with DLBCL and IPI=4-5 are reasonably treated with ASCT as first remission consolidation after 4-6 cycles RCHOP induction therapy, especially those who also have PET+ after 4-6 cycles RCHOP (particularly as determined by change in SUVmax <66% from baseline).

Recommendations for CNS Prophylaxis:

www.ahs.ca/guru
For DLBCL, factors associated with high risk (>10%) for relapse in the central nervous system include 4-6 of the following factors: 1) Age >60 years, 2) elevated LDH, 3) ECOG=2-4, 4) Stage 3-4, 5) >1 extranodal site of involvement, and 6) kidney or adrenal involvement. Other high risk situations include double hit lymphoma (MYC + BCL2 and/or BCL6 translocations) and testicular lymphoma. Prophylactic intrathecal chemotherapy does not penetrate the brain parenchyma and has not been proven to decrease meningeal or parenchymal brain relapse of lymphoma in well-designed studies. Due to the lack of proven benefit, intrathecal chemotherapy cannot be recommended even in high-risk situations where the risk of CNS relapse is 10% or higher.

For patients at high-risk of CNS involvement, we previously recommended CNS prophylaxis with high dose intravenous methotrexate (HD-MTX) 3.5g/m2 x 3 doses mid-cycle of R-CHOP following cycles 2, 4, 6. We recently reviewed our outcomes for patients who were treated according to our guidelines with a recommendation for incorporating intravenous HD-MTX for all patients with CNS-IPI score 4-6, double-hit lymphoma or testicular lymphoma. Among 906 patients treated for DLBCL, with a median follow-up of 35.3 months, CNS relapse risk was similar with and without intravenous MTX (11.2% vs 12.2%, p=0.82), with rates in high-risk patients comparable to previous reports in patients who did not receive CNS prophylaxis (10-12%). However, the risk of CNS relapse trended lower in patients who received consolidative ASCT or intensified chemo-immunotherapy versus R-CHOP (6.0% vs 14.6%, p=0.09). The ineffectiveness of prophylactic HD-MTX has been confirmed in several other multi-institutional retrospective studies, and there is evidence of increased toxicity and systemic chemoimmunotherapy delays in patients who receive HD-MTX intercalated with R-CHOP. Given the lack of documented efficacy of intravenous HD-MTX and the associated inconvenience and toxicities, we no longer recommend prophylactic intravenous HD-MTX for DLBCL patients at high risk of CNS relapse.

Treatment of Relapsed/Refractory DLBCL

Patients fit for intensive therapy:

Approach to Rel/Ref DLBCL patients fit for intensive therapy

1. Relapsed DLBCL >12 months from completion of RCHOP chemotherapy – Patients should be offered salvage platinum-containing chemotherapy followed by high dose chemotherapy (HDCT) and autologous stem cell transplantation in chemo-sensitive patients
 • All patients, ECOG 0-2, with adequate organ function and absence of active infections with relapsed disease >12 months after initial RCHOP chemotherapy should be referred to the HSCT program as soon as possible.
 • Consider RDICEP over RGDP as the preferred salvage in this population
• Potential transplant candidates should receive rituximab with salvage chemotherapy to maximize the chance of response, and in-vivo purge blood of tumour cells

2. **Relapsed/Refractory DLBCL <12 months from completion of RCHOP chemotherapy** – when publicly funded, patients should be referred for CAR T-cell therapy as second line therapy
 • In lieu of CAR T therapy, patients should receive platinum-containing salvage chemotherapy:
 i. Relapse 3-12 months: Consider RDICEP over RGDP, particularly if non-rapid progression and normal LDH
 ii. Refractory disease: RGDP or RGemOx
 • Those with less than PR can proceed to CAR T therapy, while those with chemo-sensitive disease can proceed with HDT-ASCT

3. **Relapsed/Refractory DLBCL after two or more lines of therapy** – patients should be referred for CAR T-cell therapy
 • All patients with relapsed or refractory large B-cell lymphoma, transformed FL, or primary mediastinal B-cell lymphoma after two or more lines of systemic therapy, with ECOG 0-2, adequate organ function and absence of infections should be considered for CAR T-cell therapy
 • Patients must have failed standard therapies (i.e. RCHOP first line and platinum-containing salvage chemotherapy) to be considered for CAR T therapy

Patients with chemo-refractory DLBCL and/or relapse early post ASCT have dismal prognosis with conventional therapies, with median survival of 6.3 months and only 20% of patients alive at 2 years (SCHOLAR-1 study). CAR T-cell therapy is an established treatment for adult patients with relapsed/refractory large B-cell lymphoma after two or more lines of therapy, with two immune effector cellular therapies approved in Canada, namely axicabtagene ciloleucel (axi-cel, Yescarta) and tisagenlecleucel (Kyrmiah). In the pivotal phase I/2 Zuma-1 study, 110/111 enrolled patients with refractory DLBCL, primary mediastinal B-cell lymphoma, or transformed follicular lymphoma received a single infusion of axi-cel, with CR rate of 52% and ongoing CR of 40% at 15.4 months of follow-up, and OS of 52% at 18 months. At 38.1 months median follow-up, the OS rate was 47% with median of 25.8 months. In the phase 2 Juliet trial 93 patients with relapsed/refractory DLBCL or transformed follicular lymphoma received a single infusion of tisagenlecleucel, with CR of 40% and relapse-free survival of 65% at 12 months (79% in those who achieved CR). Lisocabtagene maraleucel (Liso-cel) is a third immune effector cell therapy being studied, and the TRANSCEND NHL001 study presented at ASH 2019 demonstrated similar efficacy data, with CR rate of 53%, and OS 57.9% at 1 year (85%/in patients with CR). The main toxicities of these therapies are cytokine release syndrome, neurotoxicity, cytopenias, and B-cell aplasia/hypogammaglobulinemia and as such this therapy is be administered only at centers approved for cellular therapy treatments.

Phase III trials with axi-cel and liso-cel as second line therapy compared to the standard salvage chemotherapy approach in patients with poor prognosis relapsed/refractory DLBCL <12 months from RCHOP chemotherapy have demonstrated superior event-free survival outcomes. Importantly, in both trials <50% of patients proceeded with an autologous stem cell transplantation, mainly due to lack of chemo-sensitive disease, and >50% of these patients subsequently proceeded with CAR T therapy in 3rd line, with inferior outcomes. Review of 125 southern Alberta patients between 2015 and 2019 with relapsed/refractory DLBCL after RCHOP chemotherapy demonstrated that of the 50
patients that were intended for salvage and HDT-ASCT, only 28 underwent a stem cell transplant, with long-term cure in only 9 of these patients. These data suggest that while the current standard of care results in poor outcomes for most patients with relapsed/refractory DLBCL, the use of CAR T therapy second line could substantially increase the proportion of patients able to receive curative treatment at first progression.

Patients unfit for intensive therapy:

The prognosis of patients with relapsed/refractory DLBCL who are not candidates for cellular therapy is extremely poor, with median survival rates of less than 6 months, thus palliation is the main goal of any chosen therapy. Palliative-intent regimens including R-GemOx, polatuzumab vedotin with bendamustine/rituximab, and tafasitamab with lenalidomide have been studied in phase II trials of patients with r/r DLBCL who are unfit for intensive therapy:

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>R-GemOx</th>
<th>Pola + BR</th>
<th>Tafa + Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study population</td>
<td>49 ASCT-ineligible patients with r/r DLBCL and ECOG 0-2</td>
<td>106 ASCT-ineligible patients with r/r DLBCL and ECOG 0-2</td>
<td>80 ASCT-ineligible patients with r/r DLBCL and ECOG 0-2 (excluding primary refractory)</td>
</tr>
<tr>
<td>Administration</td>
<td>Time-limited therapy with simpler dosing</td>
<td>Time-limited therapy with simpler dosing</td>
<td>Indefinite therapy with frequent dosing</td>
</tr>
<tr>
<td>Efficacy</td>
<td>ORR 61% with CR 44% Median DOR 10 mos Median OS 11 mos</td>
<td>ORR 42% with CR 39% Median DOR 10 mos Median OS 13 mos</td>
<td>ORR 58% with CR 40% Median DOR 44 mos Median OS 34 mos</td>
</tr>
<tr>
<td>Notable toxicities</td>
<td>Myelosuppression Neurotoxicity</td>
<td>Myelosuppression Neuropathy</td>
<td>Myelosuppression Rash Thrombosis</td>
</tr>
<tr>
<td>Cost</td>
<td>Lower cost</td>
<td>High cost</td>
<td>High cost</td>
</tr>
</tbody>
</table>

Recommendations for treatment:

1. R-GemOx is the preferred second-line treatment because it is a well-established outpatient platinum-based regimen that is better tolerated in older patients than other regimens such as GDP, DHAP, or ICE, although it is associated with significant myelosuppression.

2. Polatuzumab, bendamustine, and rituximab can be considered for second or later relapses, and for patients who are unfit for, or intolerant of, R-GemOx. Patients should have reasonable performance status (ECOG 0-2) and adequate hematologic function to be expected to benefit from and tolerate polatuzumab with BR. Tafasitamab-lenalidomide is also approved but is not yet funded in Alberta. Bendamustine and tafasitamab should be avoided in patients potentially eligible for CAR-T cell therapy due to the respective risks of lymphodepletion and CD19 downregulation.

3. Some palliative patients at or beyond second relapse may have symptomatic benefit from prednisone alone, or low dose daily oral chemotherapy with chlorambucil 0.1mg/kg/day or etoposide 50mg/day, or combination oral therapy such as PEPC.
4. Involved field radiotherapy (IFRT) to symptomatic sites or localized relapses may also benefit these palliative patients.

5. Addressing goals of care and ensuring timely integration of palliative care should be a priority for all patients with r/r DLBCL who are unfit for intensive therapy.

Secondary CNS Lymphoma⁷⁹⁻⁸²
Selected patients with CNS relapse/progression may be candidates for intensive therapy as outlined in Appendix A, subheading VIII. Favorable outcomes were reported in an Alberta study of 62 SCNSL patients with median age 58 years (range 20-75) intended for transplant, with ASCT rates of 84%, 5-year PFS 53% and OS 65% for all patients, and 5-year PFS 62% and OS 73% for those undergoing R-TBuM conditioning and ASCT. One of 3 induction regimens is recommended for transplant-eligible patients and one of two options for transplant ineligible patients, based on presentation:

1) Isolated CNS lymphoma: HDMTX-based induction then RDHAP for stem cell mobilization and collection, then R-TBuM/ASCT for transplant eligible (table A) or MATRix for patients who decline ASCT but are fit for intensive induction therapy or Cytarabine/Rituximab/Thiotepa outpatient regimen for transplant ineligible (PCNSL table C).

2) Early Systemic and CNS lymphoma (prior to completing RCHOP x6): RCHOP and HDMTX x4 cycles then RDHAP for stem cell mobilization and collection, then R-TBuM/ASCT for transplant eligible (table B) or RCHOP/MTX followed by AraC then ifosfamide in transplant ineligible (table E).

3) Late relapse (prior RCHOP x6) with systemic and CNS lymphoma: HDMTX-Ifosfamide-etopside x2 then RDHAP for stem cell mobilization and collection, then R-TBuM/ASCT for transplant eligible (table C) or palliation for transplant ineligible (table F)

Unfortunately, most patients with relapsed secondary CNS lymphoma experience poor response to salvage therapy, including high dose methotrexate/cytarabine-based regimens. These patients who are unfit to receive or do not respond to high dose methotrexate/cytarabine-based therapy are best managed with palliative intent, including consideration of palliative cranial radiotherapy.
Figure 1. Treatment algorithm for diffuse large B-cell lymphoma with no double hit (MYC/BCL2/BCL6 rearrangements)

<table>
<thead>
<tr>
<th>Limited Stage</th>
<th>Advanced Stage (Stage III-IV), or Limited stage with bulk ≥10 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I-II and Bulk <10 cm</td>
<td>IPI score and age (co-morbid health)</td>
</tr>
<tr>
<td>RCHOPx3</td>
<td></td>
</tr>
<tr>
<td>PET+</td>
<td>PET -</td>
</tr>
<tr>
<td>sm-IPI=0 or sm-IPI=1 (age >60 or stage II)</td>
<td>sm-IPI=2-4 or elevated LDH or ECOG >1</td>
</tr>
<tr>
<td>R-CHOPx3 plus IFRT</td>
<td>R-CHOPx1</td>
</tr>
<tr>
<td>R-CHOPx3</td>
<td>R-CHOP x 6 ± IFRT*</td>
</tr>
<tr>
<td>No CR or RELAPSE</td>
<td></td>
</tr>
<tr>
<td>R-DICEP or R-GDP/R-GemOx</td>
<td>Palliative Rx or clinical trial</td>
</tr>
<tr>
<td>PR/CR (<10cm masses)</td>
<td>R-GemOx</td>
</tr>
<tr>
<td>High Dose Therapy/ASCT</td>
<td>Pola-BR</td>
</tr>
<tr>
<td>CAR T-cell Therapy</td>
<td>PEPC</td>
</tr>
<tr>
<td>IFRT</td>
<td></td>
</tr>
</tbody>
</table>

Stage-modified IPI (sm-IPI) score: stage II, age >60 years, ECOG 2-4, elevated LDH

Treatment of special DLBCL entities

High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements by FISH:

High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements (double hit lymphoma or DHL) is associated with a poor prognosis, with a large multicenter retrospective analysis of 311 patients reporting an OS rate <50% if IPI=2-5 vs 65% for IPI=0-1 (Blood 2014;124(15):2354). The optimal treatment of DHL is unknown, but intensive induction regimens such as da-EPOCH-R or R-CODOX-M/R-IVAC are commonly used and have demonstrated PFS benefit over R-CHOP in some retrospective studies (Blood 2014;124(15):2354) but not others (Am J Hematol 2021; 96(3):302). In addition, the use of consolidative HDT/ASCT has been associated with superior outcomes among...
patients achieving CR after R-CHOP induction but not after intensive induction regimens. This suggests that DHL patients treated with R-CHOP can be considered for ASCT consolidation, especially if IPI=2-5 at diagnosis, however other patients who achieve CR after an intensive induction regimen probably should not receive ASCT consolidation. A retrospective analysis of 99 patients with DHL in Alberta found relatively favorable outcomes with 4-year PFS 59% and OS 66%, with no significant difference in PFS or OS between patients treated with intensive induction regimens vs intention-to-transplant following R-CHOP induction. Among the 48 patients intended for ASCT, outcomes were excellent for the 75% of patients undergoing upfront ASCT with 4-year PFS 80-90%, whereas there were no survivors among the 25% of patients with primary refractory disease. This suggests that upfront ASCT can achieve durable remissions in the majority of DHL patients with chemosensitive disease, whereas alternative strategies such as CAR-T cell therapy should be strongly considered for patients with chemorefractory disease.

Alberta recommendations for high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements:

- IPI=0-1: R-CHOP x 6 cycles or da-EPOCH-R x 6 cycles
- IPI=2-5: Options include:
 - A. R-CHOP x 2-3 cycles then restaging PET (or CT if PET not readily available) with responding patients proceeding to R-DICEP x1 then R-BuMel/ASCT. Patients refractory to R-CHOP are unlikely to respond to second-line chemotherapy and should be considered for CAR-T cell therapy as soon as possible.
 - B. DA-EPOCH-R or R-CODOX-M/R-IVAC

DLBCL with MYC single-hit translocation by FISH

1. MYC-rearranged DLBCL (or high-grade B-cell lymphoma NOS) but no translocation of BCL2 or BCL6: R-CHOP x 6 cycles for most patients. However, for the poor prognosis situation of MYC translocated and age <70 years and IPI 4-5 with interim PET+ disease: R-CHOP x4 then RDHAP or RDICEP x1, then HDCT/ASCT. Alternatively R-CODOX-M/IVAC or DA-EPOCH-R could be considered

B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and classical Hodgkin lymphoma (Gray-zone lymphoma):

- R-CHOP x 6 cycles for most patients
- RCHOP followed by ASCT if high risk factors are present (IPI=4-5 especially with interim PET+ disease)

Primary Mediastinal B-Cell Lymphoma

Primary mediastinal B-cell lymphoma (PMBCL) of thymic origin represents 6-10% of all DLBCLs, and most commonly affects young adults (median age ~35), women more than men. It is frequently associated with a bulky mediastinal mass that directly extends into extranodal thoracic tissues such as pleura, pericardium and chest wall. Patients with distant lymphadenopathy or extranodal involvement outside the thorax should likely be diagnosed and treated as systemic DLBCL with
secondary mediastinal involvement, rather than as PMBCL.85 Overall, PMBCL is associated with a better prognosis than other DLBCLs, including GCB DLBCLs. The IPI score tends not to work well for PMBCL because most patients are young with fairly well-preserved performance status, and have elevated LDH. Therefore, limited vs advanced stage, and number extranodal sites (esp pleural effusions) tend to be the only factors that subdivide patients into excellent vs good prognosis. Likewise, because most patients have a very good prognosis, interim restaging PET imaging is associated with very high negative predictive value, but relatively low positive predictive value.86 These findings were confirmed in 20 patients treated with R-CHOP in Alberta, where the PPV of a positive interim PET scan was only 20\% for disease progression/relapse whereas a negative interim PET had NPV 100\%. Therefore, a positive interim PET scan should probably not be used alone to guide further therapy.

Treatment of PMBCL with RCHOP +/- RT is associated with cure rates of approximately 75-80\% and overall survival rates of 90\%. Phase II studies have reported that intensifying chemotherapy (eg. dose adjusted EPOCH-R) maintains excellent outcomes while avoiding RT. However, the prospective phase III CALGB/Alliance 50303 study randomized 464 DLBCL patients (including 35 with PMBCL) to RCHOP or DA-EPOCH-R, and found no difference in PFS or OS between regimens, although there was substantially more toxicity with DA-EPOCH-R. A large retrospective study from 11 centres compared outcomes of 132 PMBCL patients treated with R-CHOP (n=56) or with dose-adjusted R-EPOCH (n=76), and found similar survival rates of approximately 90\% with both regimens, but with more RT use in the R-CHOP group (59\% vs 13\%).87 There is no phase III evidence that RT after R-CHOP improves survival rates relative to R-CHOP alone, but this is being studied in the ongoing IELSG-37 clinical trial. Real-world data from the BCCA demonstrates that omitting RT for PET-negative patients at the end of R-CHOP therapy achieves similar TTP (80\%) and OS (89\%) as historical cohorts treated routinely with RT, with a reduction in RT use from 78\% in the historical cohort to 28\% in the PET-directed era.88 Similarly, retrospective data for 91 consecutive patients in Alberta treated with R-CHOP from 2004-2020 found a 5-year overall survival rate of 86\%, with similar outcomes for patients with advanced versus limited stage (86\% vs 92\%, p=0.31) or bulky versus non-bulky disease (83\% vs 96\%, p=0.12). For patients responding to R-CHOP, the 5-year OS rate was 93\% with RT versus 100\% without RT (p=0.17). Among 40 patients with a PET-defined complete metabolic response after R-CHOP, 5-year OS was 100\% for all patients treated with (n=9) or without (n=31) RT.

Management of patients with partial metabolic response after R-CHOP is uncertain. Prospective data show that the majority of Deauville 4 end-of-treatment (EOT) PET scans after DA-EPOCH-R are false-positives which can be monitored with surveillance PET without RT, with progressive disease occurring in only 1/16 patients with Deauville.89 Among the 34 patients in BC and Alberta with Deauville 4 EOT PET after R-CHOP (the majority of whom received RT), survival outcomes were excellent and similar to EOT PET-negative patients. It is likely that many cases of partial metabolic response after R-CHOP are false positives as well; indeed, 5 patients in Alberta and BC with Deauville 4 after R-CHOP were observed without RT and none relapsed. Extrapolating from
this data, it has been proposed that surveillance imaging without radiation may be reasonable for young patients with Deauville 4 EOT PET after R-CHOP given the likely low risk of progression and long-term risks of toxicity from RT.90

In conclusion, available evidence supports the use of R-CHOP for patients with PMBCL, with less toxicity but similar excellent outcomes as DA-EPOCH-R. End of treatment PET should be done 6-8 weeks after day 1 of the final cycle of chemoimmunotherapy to allow time for the post-treatment inflammatory response to resolve.91 In view of the long-term risk of secondary malignancy and premature heart disease from RT in young patients, RT can probably be safely omitted for patients with PET-negative disease after R-CHOP. Omitting RT in favour of surveillance imaging in 6-8 weeks (CT is the preferred modality in Alberta) may be reasonable for patients <60 years old with Deauville 4 on EOT PET after R-CHOP, while older patients and those with Deauville 5 should receive RT. For the 10-20% of patients with suspected relapsed/refractory PMBCL, the diagnosis of progressive disease should be confirmed with biopsy or clear progression on CT, and not based on FDG uptake on PET alone. Treatment options at relapse include radiation for localized disease, salvage chemotherapy and autotransplant, radiation therapy, axicabtagene ciloleucel (funded only after 2 prior lines of therapy), and pembrolizumab.

Follicular Lymphoma92-137

Throughout the following suggested treatment approach, three over-riding principles should be considered:

1. These are guidelines only. This disease often carries a long, incurable, remitting/relapsing natural history and, therefore, several treatment approaches are reasonable.
2. The mere presence of disease does not alone imply the need for treatment.
3. If therapy is required for predominantly localized disease, IFRT should be considered in lieu of systemic pharmacological treatment as long as the radiotherapy can be done with minimal early or delayed side-effects (e.g., xerostomia, severe nausea/vomiting) and without eliminating future treatment options (e.g., should not radiate ≥25% bone marrow). Figure 2 outlines the treatment algorithm for follicular lymphoma.
Figure 2. Treatment algorithm for follicular lymphoma.

Initial therapy of stage IA and contiguous stage IIA:
IFRT 24Gy/12-30Gy/20 fractions is recommended for newly diagnosed patients with peripheral stage IA or contiguous non-bulky stage IIA follicular lymphoma, even if the patient is asymptomatic.

Initial therapy of advanced stage disease (stage III/IV, B symptoms, or bulky stage I/II):
Indications for systemic therapy (usually stage III/IV or bulky stage I/II) include any one of the following:
- Patient symptoms (fever, night sweats, weight loss, malaise, pain, nausea)
- Significant lymphadenopathy (> 7 cm mass, ≥3 sites and ≥3 cm, rapidly progressive)
- Splenomegaly ≥ 6 cm below costal margin or hypersplenism or pain
- Impending organ compromise (compression, pleural/pericardial effusions, ascites)
- Cytopenias secondary to bone marrow infiltration
- Progressive disease after ≥1 year follow-up (clinically or on CT).
- Patient preference because of anxiety and poor quality of life without treatment

For patients who do not have any of the above indications for therapy, the recommended approach is to observe with (or arrange) follow-up clinical assessments every 3-6 months (“watchful waiting”), and a CT CAP 1 year after diagnosis. For patients not meeting treatment criteria 1 year after diagnosis, another CT 2 years after diagnosis could be considered. Patients who have progressive disease on
follow-up should generally be treated, even if they do not fulfill any of the other indications for therapy. A retrospective study of 238 Alberta follicular lymphoma patients managed with watchful waiting found that 24% developed transformed disease or significant organ dysfunction (at a median of 30 months) prior to initiating initial therapy, and these patients had inferior survival rates compared to other patients requiring therapy who were initially managed with watchful waiting (10 yr OS 67.9% vs 85.7%, HR 3.000 (95%CI 1.696-7.126), p=0.0007). These watchful waiting patients did not undergo routine follow-up CT scans at 1 or 2 years to identify progression. It is possible that these adverse outcomes might have been avoided with closer monitoring by CT imaging and earlier initiation of chemoimmunotherapy.

For grades 1,2,3a follicular lymphoma who have an indication for therapy, the recommended therapy involves 6 cycles of B-R (bendamustine-rituximab) chemotherapy, followed in responding patients by 2 years of maintenance rituximab (every 3 months for total of eight doses). In patients with previously untreated indolent lymphoma, B-R can be considered as a preferred first-line treatment approach to R-CHOP because of increased progression-free survival and fewer side-effects. Patients who have limited life-expectancy from serious co-morbid illness, or who do not want intravenous therapy, may be treated with oral chlorambucil or fludarabine monotherapy.

The GALLIUM clinical trial investigated the value of obinutuzumab in combination with chemotherapy followed by maintenance therapy compared to standard therapy with rituximab chemoimmunotherapy plus maintenance in the first line treatment of follicular lymphoma. The study demonstrated superiority of obinutuzumab over rituximab in terms of PFS (3-year PFS was 81.9% (95%CI: 77.9-85.2%) vs. 77.9% (95%CI: 73.8-81.4%), with acceptable increased toxicity.). As no OS advantage has yet been demonstrated, obinutuzumab is not funded in Canada for this indication and we continue to recommend rituximab.

Grade 3b follicular lymphoma should be treated as DLBCL with, R-CHOP. Rituximab maintenance has not been proven effective following R-CHOP therapy for large B-cell lymphoma, and therefore is not recommended.

Therapy of relapsed disease: Therapeutic recommendations for recurrent follicular lymphoma need to be individualized, and no one recommendation is suitable for all patients. Numerous factors need to be taken into consideration before recommending therapy for recurrent follicular lymphoma, including:

- **Patient Factors:** Age, co-morbidity, symptoms, short vs. long-term goals, preservation of future options, reimbursement/ability to pay for expensive treatments, acceptance of risks/toxicities of treatment option relative to potential benefit (RR, PFS, OS).
- **Disease Factors:** Stage, sites of involvement, grade, transformation, prior therapy, time from prior therapy (disease-free interval).

For example, previously healthy patients younger than 70 years who relapse within 2 years of initial chemotherapy have a median life expectancy of <5 years, and are best managed with HDCT/
autologous SCT. HDCT/SCT maximizes the length of disease control for all patients less than 70 years, regardless of length of initial remission, and as such is a reasonable treatment option for those who accept potential risks/toxicities. Therefore, patients younger than 70 years without serious comorbid disease, and who respond to salvage therapy should be considered for high dose chemotherapy and autologous (relapse 1-2) or allogeneic stem cell transplantation (relapse 3). A large retrospective study of consecutively treated relapsed follicular lymphoma patients in Alberta and BC reported 5 year overall survival rates following relapse of ~90% for those who received ASCT vs ~60% for those who did not receive ASCT. This marked difference in survival retained significance in multivariate as well as instrumental variable analyses. Some patients may be managed with repeating chemo-immunotherapy if they have achieved a long remission to first therapy. Standard-dose chemotherapy regimens (bendamustine, chlorambucil, CVP, fludarabine, etoposide, CEPP, GDP, FND, PEC, or MEP) can be considered secondline. For patients who have rituximab, it is reasonable to re-treat with rituximab alone or with chemotherapy as long as the patient attained at least a 6 month remission to prior rituximab-based therapy. Rituximab maintenance should only be used once in the course of a patient’s disease (first remission or first relapse).

A phase 3, open-label, two-arm parallel, randomized trial (GADOLIN), compared obinutuzumab and bendamustine followed by obinutuzumab maintenance to bendamustine alone in patients with rituximab-refractory, indolent non-Hodgkin lymphoma (failure to respond or progress during or within 6 months of a rituximab containing regimen). Both PFS (HR[95%CI]: 0.52[0.39,0.69]; p<0.0001) and OS (HR[95%CI: 0.58[0.39,0.86]; p=0.0061) were improved in the FL group treated with obinutuzumab. While there was no significant advantage reported for patients with other subtypes of iNHL, this was deemed to be based purely on the small numbers in other subgroups. Based on these results, it is recommended that obinutuzumab chemo-immunotherapy be considered in patients with rituximab-refractory iNHL. While the study used bendamustine as a chemotherapy backbone, few patients on the study had received bendamustine as their frontline therapy. Given current practice of BR for the frontline treatment of FL and the fact that there is no biological reason that the same clinical benefit of obinutuzumab would not be seen in combination with other chemotherapies, alternate NHL chemotherapy backbones can be considered for patients deemed inappropriate for bendamustine retreatment. Relatively frequent infections were noted so prophylactic antibiotics and antivirals should be considered, especially when obinutuzumab is combined with bendamustine.

Another option to consider for rituximab-refractory relapsed FL is radioimmunotherapy with 90Y-ibritumomab tiuxetan (Zevalin). This option requires Director’s Privilege approval, and is not currently listed on the Alberta Cancer Drug Benefit List for funding. In a small study of 57 patients with rituximab-refractory FL (median 4 prior therapies), the overall response rate to 90Y-ibritumomab tiuxetan was 74% (CR 15%) and median duration of response of 8.7months. There may be small subset of patients (10-15%) who achieve long-term PFS following 90Y-ibritumomab tiuxetan.
Idelalisib, a PI3Kδ inhibitor has also shown efficacy in a Phase 2 study of double-refractory FL patients (patients with lack of response or progression within 6 months of both rituximab and an alkylator). Idelalisib can lead to durable remissions in a minority of patients and is currently not funded in Canada but is available through a compassionate access program. Infectious complications and immune toxicities are frequent and prophylactic antibiotics and anti-virals are required to reduce the risk of serious infections.142

Palliative, symptomatic care (possibly including palliative IFRT 4Gy/2 fractions) is usually the best option for patients who were refractory to their 2 most recent treatment regimens, those with CNS involvement, or those with an ECOG score of 3-4.

Indolent Lymphomas (Excluding Follicular Histology)1,143-151

Indolent lymphomas should generally be treated similarly to follicular grade 1-2 lymphomas.

Table 2. Treatment of Indolent Lymphomas143

<table>
<thead>
<tr>
<th>Stage</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited</td>
<td>IFRT (24Gy/12 - 30Gy/20)</td>
</tr>
<tr>
<td>Advanced</td>
<td>Asymptomatic: observation until treatment indication</td>
</tr>
<tr>
<td></td>
<td>Symptomatic:</td>
</tr>
<tr>
<td></td>
<td>• majority should receive B-R, then rituximab maintenance</td>
</tr>
<tr>
<td></td>
<td>• alternatives in special situations include IFRT, fludarabine, or chlorambucil</td>
</tr>
</tbody>
</table>

Splenic Marginal Zone Lymphoma

Splenic marginal zone lymphoma is an uncommon type of non-Hodgkin lymphoma characterized by splenomegaly, cytopenias, lymphocytosis, and less commonly lymphadenopathy. Revised diagnostic criteria now specify the typical blood and bone marrow findings of SMZL and splenic biopsy is not usually required to establish the diagnosis152. It is still reasonable, however, to proceed with splenectomy if the cause of splenomegaly is not determined following peripheral blood and bone marrow evaluation.

The disease course is indolent and many patients can be managed expectantly until symptomatic splenomegaly or pronounced cytopenias develop. SMZL prognostic scoring systems have been described, with low hemoglobin, low platelets, elevated lactate dehydrogenase and extra-hilar lymphadenopathy as adverse markers153.

In rare cases, SMZL has been associated with hepatitis C infection (HCV), so all patients should be screened at diagnosis. Those who are HCV+ should first be offered HCV-directed therapy, as the lymphoma may regress avoiding the immediate need for further therapy154,155. Splenectomy has
previously been the standard approach to treat SMZL for over two decades. The role of splenectomy as frontline treatment of SMZL is now controversial. Risks posed by splenectomy include operative morbidity and mortality, particularly in the elderly, or those with multiple comorbidities. However, surgical outcomes are improving at experienced centres. The risk of infection with encapsulated organisms is a serious concern, but may be mitigated with timely vaccination and long-term antibiotic prophylaxis.

Monotherapy with rituximab has recently emerged as a non-operative alternative with reports suggesting survival outcomes similar to historical patients treated with splenectomy. Chemo-immunotherapy such as rituximab-bendamustine (BR) is also a rational approach for SMZL given the recent favourable results of a large scale RCT of iNHL, including marginal zone histology.

Although existing evidence is inadequate to conclude which treatment approach is superior, we propose the following strategy for managing SMZL:

1. Rituximab monotherapy is recommended as frontline therapy for most patients. A standard regimen is rituximab weekly for 4 weeks, followed by a response assessment 4-6 weeks later.
 a. Those achieving at least a partial response, defined by conventional response criteria, should subsequently receive maintenance rituximab as per other iNHL subtypes.
 b. Non-responders or those with progressive disease should proceed with either:
 i. Splenectomy if the spleen is the major site of disease or
 ii. BR for those with additional nodal disease, extensive bone marrow involvement, or non-operative candidates, then followed by maintenance rituximab in responding patients.

2. Select patients who require a splenectomy to establish the diagnosis and have no bone marrow, peripheral blood, or nodal involvement, do not require maintenance rituximab and may simply be observed.

Lymphoplasmacytic Lymphoma (LPL)

Diagnostic criteria for Waldenström macroglobulinemia (WM):
- IgM monoclonal gammopathy of any concentration
- Bone marrow infiltration by small lymphocytes showing plasmacytoid/plasma cell differentiation, usually with intertrabecular pattern of bone marrow infiltration
- LPL immunophenotype:
 - surface IgM+ CD5- CD10- CD19+ CD20+ CD22+ CD23- CD25+ CD27+ FMC7+
 - CD103- CD138-
- Recent findings documented a strong association between WM and the MYD88 L265P variant, which might serve as an additional tool to diagnose WM and to separate it from other entities such
as multiple myeloma, monoclonal gammopathy of undetermined significance, splenic marginal zone lymphoma and MALT lymphoma

Diagnostic approach to confirm a suspected case of WM:
1. Serum protein electrophoresis with immunofixation: to characterize the type of light and heavy chains.
2. 24-Hour urine for protein electrophoresis: 40%-80% have detectable Bence Jones proteinuria.
4. Bone marrow biopsy: intratrabecular monoclonal lymphoplasmacytic infiltrate, ranging from predominantly lymphocytic to lymphoplasmacytic to overt plasma cells.
5. CT of the abdomen and pelvis: to detect organomegaly and lymphadenopathy (skeletal surveys and bone scans are not necessary in absence of symptoms).
6. Blood or plasma viscosity: if signs and symptoms of hyperviscosity syndrome (HVS) or IgM> 50 g/L.
7. Direct antiglobulin test and cold agglutinin titre if positive.
8. Cryoglobulins.

IgM monoclonal protein response assessment in WM
Serum IgM monoclonal protein should be measured by serum protein electrophoresis. The use of nephelometry to determine total serum IgM should be discouraged because this method is unreliable, especially when the levels of monoclonal protein are high. The presence of cryoglobulin or cold agglutinin may affect determination of IgM; therefore, testing of cryoglobulin and cold agglutinin at baseline should be considered, and if present, serum samples should be reevaluated at 37°C to ensure accurate and consistent determination of the monoclonal protein levels.

Hyperviscosity syndrome (HVS) in LPL
Symptoms and signs of hyperviscosity include spontaneous bleeding, neurological symptoms and retinopathy. Patients with HVS have an expanded plasma volume and cardiac failure may also occur. There are several published reports demonstrating the efficacy of plasmapheresis in HVS although randomised data are lacking. There is not, however, a simple linear relationship between paraprotein concentration and either plasma viscosity, whole blood viscosity or symptoms. An increase in IgM concentration from 20 to 30 g/L results in an increase in plasma viscosity of <2 centipoise (cP) but an increase from 40 to 50 g/L increases the plasma viscosity by around 5 cP. Indeed, a 1-volume plasma exchange results in a 35-40% decrease in IgM concentration but in up to a 60% reduction in plasma viscosity. In patients with WM the actual plasma volume may exceed that calculated and, given the data above, a 1–1.5 volume exchange is therefore advisable.

General treatment guidelines for LPL/WM
The usual indications for starting patients with LPL/WM on active therapy consist of clinical evidence of adverse effects of the paraprotein (HVS with neurological or ocular disturbance, peripheral neuropathy, amyloidosis, symptomatic cryoglobulinemia), symptomatic anemia (Hb<100g/L beware of
pseudo-anemia from hemodilution), platelets <100, progression to high-grade lymphoma, significant adenopathy or organomegaly, or constitutional symptoms.

- **Plasmapheresis:** 1-2 procedures, exchanging 1-1.5 calculated plasma volumes, are advised for the treatment of HVS in WM, followed by chemotherapy to prevent paraprotein re-accumulation. In patients who are drug-resistant, plasmapheresis may be indicated for long-term management. Although there are few studies that consider the role of plasma exchange in the treatment of cryoglobulinemia, there is a clear rationale for its use. The treatment room should be warm and blood warmers used in the cell separator circuit to prevent precipitation during the procedure.

- **Chemotherapy:** The most common initial chemotherapy for LPL is B-R (Bendamustine-Rituximab) followed by rituximab maintenance, similar to other indolent B-cell lymphomas. For patients who do not tolerate B-R, CDR (Cyclophosphamide, Decadron, Rituximab) or Bortezomib-based therapy (eg. R-Bortezomib, R-CyBorD) should be considered. Rituximab is active in the treatment of WM but associated with the risk of transient exacerbation of disease-related complications and should be used with caution in patients with symptoms of hyperviscosity and/or IgM levels >40 g/L. In patients with hyperviscosity and/or IgM levels >40 g/L, it is advised to hold rituximab for cycle 1, and start rituximab with cycle 2 chemotherapy. In retrospective studies, purine analogue therapy is associated with higher rates of prolonged cytopenias, infections, secondary MDS/AML, and transformation to large cell lymphoma when compared to therapy with alkylating agents.

- **New data supports the use of ibrutinib in LPL (both first line and for relapsed/refractory disease).** Given the tolerability and durable responses to ibrutinib monotherapy, this is the preferred second line therapy for most patients. 163, 164

- **Many second-line therapy options exist.** Patients who have obtained lengthy first remissions can be re-treated with chemo-immunotherapy with or without the addition of bortezomib (eg. R-Bortezomib, R-CyBorD). Purine analogues (Fludarabine) are usually reserved for multiply relapsed disease.

Hairy Cell Leukemia

Hairy cell leukemia (HCL) and HCL variant (HCL-V) are mature lymphoid B-cell disorders, characterized by the identification of hairy cells and a specific genetic profile. Diagnosis of HCL is based on morphological evidence of hairy cells, immunophenotypic positivity for CD11C, CD103, CD123, and CD25 expression and the presence of BRAF V600E somatic mutation. BRAF-V600E has not been identified in other B-cell chronic lymphoproliferative disorders except very rarely so the mutation is now considered as the molecular hall mark of the disease. Absence of the BRAF gene mutation is reported in approximately 10% of patients with HCL and appears to constitute a subgroup with a poor prognosis165.

Patients with asymptomatic HCL may be managed with active observation (watch & wait strategy). Symptomatic patients should be treated with symptoms commonly derived from cytopenias or splenomegaly. Most guidelines agree that even asymptomatic patients with marked cytopenias...
should be treated including at least one of the following: hemoglobin < 110 mg/dL, platelet count <100 000/µL, or an absolute neutrophil count <1000/µL.

In the first-line setting, purine analogs (cladribine or pentostatin) have been demonstrated to result in long overall survival. No randomized trials have been performed in HCL with no studies to suggest superiority of either drug but cladribine is available in Canada and is the most frequently used drug worldwide for HCL. Early studies used continuous intravenous dosing over 7 days but more recent studies (non-comparative) have investigated subcutaneous dosing over 5 days and demonstrate excellent responses. The recommended dose of cladribine is 0.1-0.14mg/kg daily for 5-7 days. We recommend sc dosing for convenience and reduced infusion times. Infection prophylaxis is recommended as with other purine analogues (PJP and viral prophylaxis for 6-12 months) and patients with active infections should have control of infection prior to therapy initiation if possible.

For relapsed HCL, cladribine can result in a second durable remission however, synergy has been demonstrated with rituximab such that we recommend combination therapy with rituximab and cladribine for relapsed disease. Studies of rituximab have used a weekly schedule x 8 weeks, concurrent with cladribine. Careful attention for and prophylaxis against infection is recommended.

A recent study investigated the addition of rituximab to cladribine in the frontline setting. HCL patients treated with concurrent cladribine and 8 weekly doses of rituximab had higher MRD-free complete remission rates than patients treated without rituximab or with delayed rituximab. (JCO 2020; 38:1527) As improved responses are predicted to lead to longer remissions and given the proven benefit of rituximab in combination with chemotherapy frontline for other indolent NHLs, we recommend consideration of cladribine + rituximab for frontline HCL treatment. Infectious risks and lack of survival data should be considered with cladribine monotherapy favoured for frailer patients and those at high risk of infection.

Given the importance of BRAF V600E in this disease, BRAF inhibitors have been investigated in relapsed patients with high response rates. Low dose vemurafenib at 240mg twice daily was reported to result in complete remissions in 40% of patients. Unfortunately, results do not appear durable after drug discontinuation and retreatment or chronic treatment may be required. We recommend BRAF inhibition for patients who are refractory to cladribine (relapse < 24 months) or relapse after cladribine + rituximab. Vemurafenib has also been used successfully in previously untreated patients with active infections as a bridge to cladribine therapy during treatment of the infection.

Moxetumomab pasudotox is a recombinant CD22-targeting immunotoxin, which has also proven efficacy in highly refractory HCL patients. This agent is associated with severe adverse reactions including hemolytic-uremic syndrome (7.5%) and capillary leak syndrome (5%). (leukemia 2018; 32:1768) Moxetumumab is not currently funded in Canada but could be considered in relapsed HCL patients who have exhausted all other therapeutic options.
Special Lymphomas

Mantle cell lymphoma\(^{136, 137, 171-186}\):

Characteristics of mantle cell lymphoma include: male predominance, median age approximately 65 years, advanced stage with multiple extranodal sites (marrow, blood, and intestinal tract), relative chemoresistance, no evidence for curability following R-CHOP chemotherapy, median time to relapse after initial chemotherapy of 12-18 months and median survival following RCHOP induction of 3-5 years. Significant improvements in PFS over RCHOP alone have been demonstrated with the addition of high dose cytarabine to RCHOP-like regimen induction followed by high dose therapy and ASCT for transplant eligible patients, and for B-R induction for transplant ineligible patients, as well as for prolonged rituximab maintenance after completing initial chemotherapy.

Recommendation regarding Watchful Waiting for MCL

Although most patients with MCL have relatively aggressive disease, and even those asymptomatic patients initially managed with watchful waiting have median times to first systemic therapy of 11-12 months, a small proportion of patients can be managed expectantly for over 5 years\(^{187, 188}\). Features suggestive of indolent MCL include leukemic non-nodal presentations, predominantly hypermutated immunoglobulin heavy chain variable regions, non complex karyotypes and absence of SOX11 expression by immunohistochemistry\(^{189}\). Occasionally, nodal MCL can also follow an indolent course\(^{187, 188}\). Prognostic indices such as the MIPI have not been shown to identify indolent MCL\(^{187}\).

Poor prognostic features associated with shorter survivals and response durations, for which expectant management is not appropriate, include high burden nodal disease, Ki-67 positivity >20-30%, blastoid histology, p53 or Notch1 mutation, gene expression profiling and altered microRNA signature\(^{190}\). No prospective randomized trials, or properly designed retrospective comparative effectiveness research studies have compared immediate treatment versus watch-and-wait for MCL patients without clear indications for therapy. Poorly designed retrospective studies suggest similar survival outcomes to immediate therapy, however these studies were biased because patients were selected for watchful waiting based upon better prognostic factors (eg. younger age, better performance status) and did not routinely administer immediate aggressive therapy according to current standards to all patients in the control groups\(^{187, 188}\). Prospective randomized trials have demonstrated that more aggressive therapy improves PFS and OS rates relative to less aggressive therapy for MCL. Extrapolating these data to the hypothetical question of aggressive therapy vs no immediate therapy leads to the logical conclusion that immediate therapy is likely the superior approach for most MCL patients.

Given the lack of high quality evidence from properly conducted comparative studies to prove the W&W is non-inferior to immediate therapy, W&W should only be considered for patients who present with all of the following features:

1) Non-nodal disease such as CLL-like presentation (lymphocytosis without associated cytopenias) or stage IAE marginal zone-like presentation. Patients presenting with nodal disease should generally receive immediate chemo-immunotherapy as indicated in treatment
sections below unless they have significant co-morbidity that will limit life-expectancy, low tumor burden, and meet other criteria listed in this section below.

2) No disease-related symptoms

3) No adverse pathology features such as blastoid variant, Ki67>20% of cells, or complex cytogenetic changes. Other adverse features include SOX11 expression and complex cytogenetic changes, however, SOX11 immunohistochemistry is not routinely available in Alberta.

4) Patient consent to forgo immediate therapy despite knowledge of demonstrated survival benefits of aggressive vs less aggressive therapy. Patient agreement to surveillance disease monitoring.

Treatment – Transplant Eligible Patients (Age <65yrs)

The accepted standard of care for newly diagnosed MCL patients <65 years of age without major co-morbidities involves chemoimmunotherapy followed by high dose therapy with ASCT and then 3 years of rituximab maintenance administered every 2 months. Progression free and overall survival benefit has been established in a prospective randomized trial for patients treated with myeloablative radiochemotherapy followed by autologous stem cell transplant in first remission as consolidation after CHOP-like chemotherapy. This strategy was compared to interferon alpha maintenance and demonstrated a 22mo improvement in progression free survival and 20.5mo improvement in overall survival with ASCT. These benefits of ASCT were seen in patients who had low risk MIPI, and who attained CR after RCHOP induction. The addition of high dose cytarabine with rituximab (RC) to RCHOP-like regimens is associated with improved rates of CR, PFS, and OS relative to RCHOP alone. This is supported by studies from the GELA and the European MCL Network with R-CHOP/R-DHAP induction prior to ASCT (RCHOP-21 x 3 followed by R-DHAP x3 , or alternating RCHOP/RDHAP x 6 cycles), as well as the Nordic regimen published as a phase II trial involving RCHOP-21 alternating with Ara-C [3gm² for patients under age 60 years or 2g/m² for patients over 60 years, repeated every 12 hours for a total of 4 doses], for a total of 6 cycles, then ASCT. Given the superiority of BR over RCHOP in terms of efficacy and tolerability in patients with MCL, a phase 2 study of BR and RC induction for transplant-eligible patients was conducted and demonstrated a favorable safety profile as well as efficacy (with CR 96% and 93% MRD negativity after ASCT). A pooled analysis of 89 patients who received BR/RC induction chemotherapy prior to ASCT demonstrated a high transplant rate (89%), and durable remissions (5-yr PFS 80% and OS 85%) thus confirming that BR/RC is an excellent choice for induction therapy in MCL.

TP53 mutation is an uncommon (11%) but significant poor prognostic finding in patients with MCL, highly associated with blastoid morphology, Ki-67 >30%, and high risk MIPI. Unfortunately, intensified standard-of-care regimens for younger patients with MCL do not overcome the deleterious effects of TP53 mutations, with a median OS of 1.8 years, compared to 12.7 years for TP53-unmutated (p,0.0001). Response to ibrutinib is also less favorable in patients with mutated versus wild-type TP53, with median PFS of only 4 months. As such, all patients who are transplant-eligible should undergo TP53 mutational testing, with allogeneic SCT preferred over autologous SCT for
patients with available donors. Allogeneic SCT should also be considered in patients with relapsed disease or with high risk MIPI scores at diagnosis and significant blood/marrow involvement, especially with blastoid morphology.

Although maintenance rituximab has been shown to improve PFS and OS (4 year OS 87% vs. 63%) in the elderly population (age > 60) after induction with R-CHOP, the role of rituximab maintenance after ASCT for younger patients was uncertain until results of the phase III trial (LyMa) were reported. In the LyMa trial, 299 patients <66 years of age with mantle cell lymphoma received 4 courses of R-DHAP followed by R-BEAM/ASCT (patients who did not achieve at least PR after R-DHAP could receive 4 additional courses of R-CHOP to facilitate ASCT) and 240 responders were then randomly assigned to receive 3 years of rituximab maintenance therapy (375 mg/m², one injection every two months) or watch and wait. The median follow-up from randomization after transplantation was 50.2 months (range, 46.4 to 54.2). Progression-free survival at 4 years was improved at 83% (95% CI, 73 to 88) in the rituximab group versus 64% (95% CI, 55 to 73) in the observation group (P<0.001) and overall survival was improved at 89% (95% CI, 81 to 94) in the rituximab group versus 80% (95% CI, 72 to 88) in the observation group (P=0.04). In support of the LyMa trial, a retrospective review of 72 patients previously enrolled in a phase II trial showed a progression free survival benefit in patients who received maintenance Rituximab vs those who did not (2 year PFS 90% vs. 65%).

Treatment – Transplant Ineligible Patients (Age >60-65yrs)
For patients with mantle cell lymphoma over 60-65 years of age, B-R induction x6 cycles is our standard of care. Results from a recently published open-label, multicentre, randomized, phase 3 non-inferiority trial found a significant benefit for progression-free survival in patients with mantle cell lymphoma treated with B-R versus R-CHOP (HR 0.61, 95% CI 0.42-0.87, p=0.0072). In addition the trial confirmed the improved toxicity profile of BR over RCHOP.

Regarding rituximab maintenance, there is no published trial examining its benefit following BR induction. The European Mantle Cell Lymphoma Elderly trial confirmed a benefit of rituximab q2 months until progression (vs. interferon-α 2a or 2b) following RCHOP induction. After a median follow-up of 30 months, rituximab maintenance was associated with a significantly longer remission duration compared to interferon maintenance (51 vs. 24 months; HR=0.56, 95% CI 0.36-0.88; p=0.0117). While there was no difference in overall survival between the two groups, a subcohort of patients treated with R-CHOP appeared to show an advantage in 3-year overall survival with rituximab versus interferon maintenance (85% vs. 70%, p=0.0375). The StiL group investigated the value of R maintenance following BR and reported a lack of benefit in terms of PFS or OS. However, the study was underpowered to detect a difference. Further, a multicentre retrospective study reported superior outcomes of patients given R maintenance (vs. observation) after achieving CR or PR with BR, with an OS advantage for those who achieved PR only. We favour following BR x 6 cycles with R maintenance but with a maximum duration of 4 years of rituximab maintenance given the balance between efficacy, toxicity and cost. Given the lack of strong data to support this
approach, R maintenance could be omitted or truncated in patients for whom the benefits of extending a remission do not outweigh the inconvenience of maintenance therapy.

The rare patient who has stage I-IIA, non-bulky mantle cell lymphoma could be considered for B-R + IFRT, or even IFRT alone if they are older than 70 years of age or have significant co-morbidities.

Summary Initial Treatment Recommendations for Mantle Cell Lymphoma:

Immediate chemoimmunotherapy is recommended for most patients. See *Recommendation regarding Watchful Waiting for MCL* for details on the minority of patients for whom watchful waiting is recommended.

Treatment – Transplant Eligible Patients (Age <65yrs)

1) Induction: BRx3 cycles, followed by RCx3 cycles
 a. High dose cytarabine dosing
 i. 2 g/m² BID daily x2 days for age <60, CrCl >60 ml/min, and no pre-existing neurotoxicity
 ii. 1.5 g/m² BID for age >60, or CrCl 46-60 ml/min, or pre-existing neurotoxicity
 iii. 1 g/m² BID for CrCl 31-45 ml/min
2) Autologous blood stem cell collection with high dose cytarabine and G-CSF mobilization
3) Consolidation: High dose therapy and ASCT
4) Maintenance rituximab 375mg/m² IV or 1400mg sc (preferred) every 2 months x 3 years post ASCT

For patients with TP53-mutated MCL and/or blastoid variant, consolidation with an allogeneic SCT is recommended over autologous SCT.

Treatment – Transplant Ineligible Patients (Age >60-65yrs).

1) Induction: Bendamustine-Rituximab x6 cycles
2) Rituximab maintenance q2mo until progression or for maximum 4 years

The rare patient with stage I-IIA, non-bulky mantle cell lymphoma could be considered for B-R + IFRT, or even IFRT alone if they are older than 70 years of age or have significant co-morbidities.

Treatment Relapsed Mantle Cell Lymphoma.

There is no standard treatment for relapsed MCL but there are many options, including chemotherapy and novel agents. In general, treatment choice should take into consideration the duration of response to previous treatment.

The Bruton’s tyrosine kinase (BTK) inhibitors have shown the most promise as therapeutic agents for relapsed MCL and are the preferred secondline therapy. A phase 3 trial that randomized relapsed or
refractory MCL patients who previously received at least one rituximab-containing regimen showed superior PFS using ibrutinib over temsirolimus (mPFS 14.6 vs. 6.2 months, p<0.0001) but no significant advantage in OS. Acalabrutinib has also been investigated in relapsed/refractory MCL in a Phase 2 study with 12 month PFS and OS of 67% and 87% respectively. Similarly, in a phase 1/2 trial with zanubrutinib the median PFS was 21.1 months and median DOR was 18.5 months.

Patients who achieved 12-24 months PFS with previous chemotherapy may do well with a different noncross-resistant chemotherapy regimen (R-bendamustine or R-BAC if previous (R) CHOP, or vice versa. Other treatment options include bortezomib combined with rituximab +/- chemotherapy. Maintenance rituximab prolongs PFS and OS in relapsed MCL but has not been studied in patients that received it after first-line therapy.

Lenalidomide also has efficacy in this setting, particularly in combination with rituximab +/- chemotherapy.

Brexucabtagene autoleucel (brexu-cel) is a CAR T therapy that is Health Canada approved for patients with relapsed or refractory mantle cell lymphoma who have received treatment with a BTKi. In the ZUMA-2 phase 2 trial, the estimated PFS was 61% and OS 83% at 12 months. This will be an option in the future for patients who are progressing on BTKi who are fit for intensive therapy.

Allogeneic stem cell transplant has the potential to cure MCL, as is evident from a plateau in the survival curves that is often seen post transplant. Because most patients present over the age of 60 and with multiple comorbidities, allogeneic stem cell transplant is not often offered. It is suggested in relapsed or refractory disease for those patients who are young and fit, even after autologous stem cell transplant.

Several retrospective reviews have looked at the outcomes of allogeneic stem cell transplant in the relapsed/refractory setting. Le Gouill et al. have shown a 2 year EFS of 50%, 2 year OS of 53% and 1- and 2-year transplant related mortality of 22% and 32% respectively. Longer term follow up has demonstrated 6 year PFS and OS rates of 46% and 53%, respectively confirming the plateau in response that is often seen to allogeneic stem cell transplantation. Response to chemotherapy has consistently been shown to predict both success of allogeneic stem cell transplant and transplant related mortality, with the best outcomes in those who have achieved a CR or CRu. Chronic GVHD has been shown in retrospective reviews to reduce the risk of relapse and DLI has been shown to salvage some patient who relapse or progress post allogeneic stem cell transplant, suggesting a graft-versus-tumour effect in MCL. Reduced intensity Allo SCT in the MCL setting has also been looked at retrospectively with 5 year PFS and OS rates of 14% and 37% respectively, and 1 year non relapse mortality of 18%. Ibrutinib bridging prior to allogeneic SCT has recently been shown to improve transplant outcomes, with 2 year PFS 76% and 2-year OS 86% in one published series.
The Calgary experience suggests no difference in OS or PFS when allogeneic vs. autologous stem cell transplantation are used in front-line therapy however, in the relapsed/refractory setting, allogeneic stem cell transplantation appears to offer superior OS and PFS.

Summary - Approach to Relapsed/Refractory MCL

1. Treatment with BTKi second line is preferable over chemoimmunotherapy
2. For patients not fit for intensive cellular therapy and have failed BTKi, palliative options include bortezomib-based therapies, lenalidomide, and clinical trials
3. For patients fit for intensive cellular therapy (ECOG 0-2 and meeting eligibility criteria) and receiving BTKi
 i. Disease response assessment is recommended by 6 months of therapy and can be considered again at 12 months if in PR, and thereafter at the discretion of the treating physician
 ii. Patients intolerant to ibrutinib should be trialed on alternative BTKi (if possible) prior to referral for cellular therapy
iii. If responding to therapy (PR/CR), fit and eligible for allogeneic SCT, particularly if high risk disease (e.g. TP53+), refer for opinion regarding allogeneic SCT
iv. If not responding to therapy, OR progressing on BTKi, refer for CAR T therapy (once available)

Lymphoblastic lymphoma

Patients with lymphoblastic lymphoma require aggressive combination chemotherapy, similar to regimens used in acute lymphoblastic leukemia (ALL), involving induction, consolidation, prophylactic intrathecal chemotherapy and either maintenance therapy or first remission allogeneic SCT (occasionally autologous SCT). Refractory or relapsed patients should be considered for allogeneic SCT if not done previously.

Burkitt lymphoma

Patients with classical Burkitt Lymphoma require aggressive combination chemotherapy with prophylactic intrathecal chemotherapy. Acceptable regimens such as R-CODOX-M/IVAC are described in Appendix A. First-remission autologous SCT should be considered for patients who cannot tolerate timely administration of full dose R-CODOX-M/IVAC (particularly with adverse prognostic features). DA-EPOCH-R is an alternative intensive chemotherapy regimen that is easier to tolerate than R-CODOX-M/IVAC and could be considered in fit, older patients or patients with comorbidities who are deemed appropriate for curative intent therapy.

Patients who do not have classical Burkitt Lymphoma (eg. Double hit DLBCL, Unclassifiable with features intermediate between DLBCL and Burkitt Lymphoma, etc) do not seem to achieve high cure rates with R-CODOX-M/IVAC, and instead should receive different induction therapy, often with first remission ASCT (see section on DLBCL above).

Special Problems in Lymphoma Management

Gastric MALT lymphoma

For complete staging evaluation, patients with gastric MALT lymphoma require gastroscopy and multiple mucosal biopsies for *Helicobacter pylori*. Stage IAE low grade gastric MALT should be treated with H.pylori eradication following current guidelines. After treatment with antibiotics, patients should undergo repeat gastroscopy at 3 months, then every 6 months for 2 years, then annually for 3 years. Biopsies should be taken for lymphoma and *H pylori* each time. One re-treatment should be tried if *H pylori* persists. MALT lymphoma may slowly regress over 12-18 months after *H pylori* eradication. If lymphoma recurs or persists more than 12-18 months after eradication of *H pylori*, the patient should receive upper abdominal irradiation (30 Gy/20 fractions with POP if anatomy permits, otherwise 4-5 field plan with superior portion AP/PA and inferior portion AP, R lateral and L lateral). Patients with localized MALT lymphomas are reported to have excellent clinical outcomes after moderate-dose radiation, significantly less risk of distant recurrence, and good overall
survival. Patients could also be considered for IFRT rather than *H pylori* therapy if the tumour is associated with t(11;18), NFkB, or nuclear bcl-10 expression. Stage IIAE or greater gastric MALT should be managed as advanced low grade lymphoma plus eradication of *H pylori* with antibiotics. Other histologies of gastric lymphoma should be managed as per the sections on aggressive lymphomas or follicular lymphomas above.

Testicular lymphoma

In contrast to other patients with localized large B-cell lymphoma, patients with stage IAE or IIAE testicular lymphoma are cured less than 50% of the time using brief chemotherapy and irradiation. Thus, the recommended treatment for all stages of testicular lymphoma is a full course of chemotherapy (R-CHOP x 6 cycles). An additional problem often seen in these patients is relapse in the opposite testicle. This can be prevented by scrotal irradiation (25-30Gy/10-15 fractions). Finally, these patients are at high risk for CNS relapse. Although some experts recommend prophylactic intrathecal chemotherapy, especially for stage 3-4 disease, this has not been proven effective. Unfortunately, many of the CNS relapses occur within the brain parenchyma, and are not prevented by intrathecal chemotherapy. For this reason, CNS prophylaxis should involve high dose intravenous methotrexate 3.5g/m² every 14-28 days x 2-3 doses after completion of all 6 cycles of R-CHOP.

Primary CNS lymphoma (PCNSL)

Diagnosis of PCNSL is based on a biopsy of the brain lesion, or pathological examination of a vitrectomy or CSF specimen. A bone marrow biopsy and CT scan of the chest, abdomen, and pelvis is required to rule out systemic disease. Additional staging tests include CSF cytology (only if lumbar puncture is not contraindicated because of intracranial hypertension and midline shift). HIV serology should also be obtained.

Treatment of PCNSL involves induction chemotherapy including high dose methotrexate 3.5g/m² every 2 weeks for 4 to 5 doses. Intrathecal methotrexate has not been shown to be beneficial if high-dose methotrexate is used. In a phase II trial, 79 patients aged 18 to 75 years with ECOG 0-3 and mostly low-to-intermediate IELSG risk were randomized to treatment with high dose methotrexate plus cytarabine or high-dose methotrexate alone for 4 cycles every 3 weeks, followed by whole brain radiotherapy (WBRT). The investigators reported superior CR (18% vs. 46%, *p*=0.006), ORR (40% vs. 69%, *p*=0.009) and 3 year EFS (24% vs. 35%, *p*=0.02) for patients treated with high-dose methotrexate and cytarabine versus high-dose methotrexate alone. It is therefore recommended to include high-dose methotrexate and cytarabine during induction therapy for PCNSL.

Whole brain radiotherapy (WBRT) has fallen out of favour for PCNSL, based in part upon high rates of severe neurotoxicity following high-dose methotrexate, and in part due to the results of the G-PCNSL-SG1 randomized controlled trial, in which 551 immunocompetent PCNSL patients (median age 63 years) were randomized to chemotherapy followed by WBRT (arms A1, B1) or chemotherapy alone (arms A2, B2). 411 patients entered the post-high dose methotrexate phase, and 318 of these patients were treated per protocol. For this per protocol population, there were no differences in median OS (32.4 vs. 37.1 months, *p*=0.8) or median PFS (18.3 vs. 12 months, *p*=0.13) between the...
chemotherapy plus WBRT arms (A1+B1, n=154) or chemotherapy alone arms (A2+B2, n=164), respectively253. A recent study suggests neurotoxicity can be reduced by decreasing WBRT dose to 23.4Gy after CR to induction HDMTX-based chemotherapy. The 2-year PFS was 78\% in these patients252.

Although patients with refractory or relapsed PCNSL typically have dismal outcomes, autologous stem cell transplantation (ASCT) has shown promising results in this setting. Soussain \textit{et al.} (2001) have reported a 3-year event-free survival (EFS) rate of 53\% for patients with relapsed/refractory PCNSL undergoing ASCT following high dose thiotepa, busulfan and cyclophosphamide (TBC) conditioning251.

Small studies have demonstrated durable remissions with ASCT for PCNSL, however, the optimal conditioning regimen remains undefined254-257. With the knowledge of our initial encouraging experience with TBC/ASCT254, and the lack of any widely accepted standard treatment for PCNSL, TBC/ASCT consolidation was considered an acceptable option to treat consenting PCNSL patients at our centre. Review of our data proved the efficacy of this therapy (PFS 52\% at 5 years post TBC/ASCT) but with significant toxicity (5 treatment-related deaths, all occurring in patients over 60 yrs). To reduce the TRM, we modified our protocol to omit cyclophosphamide starting in 2011. We recently completed a retrospective review of the outcomes of this protocol for patients treated between Nov 2011 and Dec 2017. In total, 42 patients with a median age of 61 yrs (42-82) were diagnosed with PCNSL from November 2011 – December 2017 in Alberta. Of these 42 patients, 26 patients with a median age of 56.5 years (42-63) were initially deemed to be transplant-eligible and achieved a 3 year PFS rate of 78.3\%, even though only 21 (81\%) actually received ASCT. Of the 5 who did not proceed to ASCT, 2 had progressive disease on induction and 2 had toxicity to induction preventing ASCT. There was no transplant-related mortality. The 3 yr PFS was 81.2\% for the 21 patients who received TBu/ASCT after 2011 compared to only 54.5\% for 22 historical control patients who received TBC/ASCT as part of upfront therapy for PCNSL prior to 2011 in Alberta, with respective 3 yr OS rates of 87.1\% and 54.5\%.

The Anocef-Goelams PRECIS prospective randomized phase II trial evaluated high dose chemotherapy and ASCT consolidation using TBC conditioning (n=38) vs WBRT (n=38) after induction therapy (R-MBVPx2 then R-AraC x2) for PCNSL pts 18-60yo in 23 French centres, and reported 2 yr PFS rates of 86.8\% vs 63.2\% in favor of ASCT258. Based on these data, we recommend TBu/ASCT consolidation therapy for all eligible PCNSL patients259, 260.

The role of Rituximab in treating PCNSL was evaluated in the International Extranodal Lymphoma Study Group (IELSG) 32 study261, which randomized patients with histologically-proven primary CNS lymphoma to receive a maximum of four 3-week cycles of methotrexate at 3.5 g/m2 on day 1 and cytarabine at 2 g/m2 twice daily on days 2 and 3, either alone (arm A; n = 75), in combination with 375 mg/m2 of rituximab on day -5 and 0 (arm B; n = 69), or combined with rituximab at the same dose plus 30 mg/m2 of thiotepa on day 4 (MATRIX arm; n = 75). The study was conducted at 52 locations across five countries. The median patient age was 58 years (range, 18-70) and all patients were HIV-
negative. Overall, patients had an ECOG PS ≤3, with patients aged 66 to 70 years having an ECOG PS ≤2. Patient characteristics were well balanced among the study arms. Autologous stem cells were successfully collected after the second treatment course in 152 patients (94%). In the MATRIX arm C, the overall response rate was 87% (95% CI, 80-94) compared with 74% (95% CI, 64-84), and 53% (95% CI, 42-64) in arms B and A, respectively (P = .00001 for A vs C). As reported by Dr. Andrés Ferreri at the ASH 2016 conference (abstr 511), at a median follow-up of 40 months, the PFS rate was approximately 55% in the MATRIX arm C, 39% in arm B, and 29% in arm A, with OS rates of 63%, 46%, and 31%, respectively. Of the 219 enrolled patients, 118 (54%) patients without progressive disease (n=52) or excessive toxicity/poor mobilization/refusal (n=49) underwent a second randomization comparing consolidation with whole-brain irradiation (n=59) or ASCT (n=59). The CR rate similarly improved from 54% after induction up to 94% after either consolidation therapy, suggesting a very important role for consolidation therapy. There were no statistically significant differences in PFS after the two consolidation treatments (3yr PFS approximately 60-70%), however, neurotoxicity rates were higher in the WBRT arm.

The potential benefit of rituximab with induction chemotherapy was not confirmed in different phase III trial by HOVON 105/ALLG NHL 24, in which 119 patients in Netherlands, Australia and New Zealand were randomized to 2 cycles of induction (MTX, BCNU, teniposide, prednisone) with or without rituximab, then followed by consolidation with cytarabine and WBRT 30Gy (+10Gy boost) if <60yrs of age. This study reported non-significantly different 1 year EFS rates of 49% and 52% for rituximab vs no rituximab (ORR 87% and CR 67%).

The Alberta Lymphoma Group established a provincial PCNSL Treatment Protocol in November 2011. The rationale behind the 2011 protocol included:

1) Induction chemotherapy:
 a. First 2 cycles: HDMTX 3.5g/m2 d1,15 with procarbazine 100mg/m2 po d1-7. This treatment had been shown to induce response and is tolerable for patients who may be debilitated at the time of initial diagnosis of PCNSL. Cytarabine was not added to first cycle HDMTX because patients may not tolerate intensive therapy well until performance status improves.

 b. Stem Cell Mobilization and Apheresis: to be done with first dose of Cytarabine because stem cells may not mobilize well after multiple cycles Cytarabine/G-CSF. Rituximab will be used in addition to Cytarabine due to reports that lymphoma cells can circulate in blood and marrow in patients with PCNSL, and Rituximab may decrease risk of collecting contaminated autograft as has been shown for other B-cell lymphomas.

 c. Final 2 Cycles will combine Cytarabine with HDMTX as done in a prior IELSG study to improve response rates and decrease frequency of primary progressive disease.

 d. Rituximab was added in 2016 for a total of 6 doses during induction to improve response

2) High Dose Chemotherapy (patients <70 yo with no significant co-morbidities, KPS>60% after induction therapy, and PCNSL not secondary to immune suppression):
a. Thiotepa 300mg/m2 x2d and Busulfan 3.2mg/kg x3d without cyclophosphamide. Because cyclophosphamide does not penetrate the blood brain barrier particularly well, its omission may decrease treatment-related mortality without decreasing cure rates compared to the previous TBC regimen.

3) Ifosfamide consolidation (transplant refusal or ineligible patients):
 a. Ifosfamide crosses BBB approximately 30%, and gives some exposure of PCNSL to alkylating agent therapy264, 265.

\textbf{Recommendations: PCNSL Transplant-Eligible (Usually <70 years old)}

The above evidence suggests that transplant-eligible patients are best treated with HDMTX/AraC-based induction followed by TBu/ASCT consolidation. There also is a potentially important role for the addition of rituximab to induction chemotherapy when ASCT consolidation is used. However, the optimal number of induction chemotherapy cycles is unknown, and perhaps as soon as a patient achieves a response and is physically well, they should proceed directly to ASCT before the disease starts to progress, or cumulative toxicity from further induction therapy prevents ASCT consolidation. As such, the 2018 PCNSL guidelines have been modified to decrease the length of induction therapy prior to ASCT. We have not incorporated MATRIX induction, because the use of MATRIX may decrease the ability of patients to proceed to ASCT due to toxicity, increased likelihood of patient refusal due to treatment-fatigue, or due to poor stem cell mobilization. We believe the use of ASCT is more important than the use of MATRIX. Our real world outcomes using non-MATRIX induction and TBu/ASCT are numerically superior to those reported in the MATRIX study. We also increased the age limit for the transplant eligible protocol to 75 years, however, patients over age 70 years must be extremely healthy with no comorbidities and must also be highly motivated to receive TBu/ASCT. The increased age limit is supported by studies showing reasonable outcomes and tolerability of high dose therapy and ASCT for patients over age 65 years. For example, Schorb and colleagues reported TRM of only 3.8% and 2 year PFS of 80% for front-line and 54% for 2nd line thiopeta-based high dose therapy and ASCT in 52 PCNSL patients aged 65-77 years (median 68)233. MATRIX could, however, be used for transplant-eligible patients who refuse transplant.

\textbf{Recommendations: PCNSL Transplant-Ineligible}

There is no current standard of care for elderly PCNSL. We previously recommended high dose methotrexate in combination with high dose cytarabine with or without WBRT consolidation. In a recent review of our local data, of the 16 patients who were considered transplant-ineligible at diagnosis, their median age was 70 yrs (61-82), and only 8 were initiated on the transplant ineligible protocol of methotrexate and cytarabine (others received palliation only (n=4), WBRT alone (n=1), and single agent MTX alone (n=3). The 3 yr PFS rate for the 16 transplant ineligible patients was 0%. Based on these results and the poor quality of life associated with repeated hospitalisations for methotrexate, we propose an outpatient regimen of cytarabine, rituximab and thiopeta for patients who are unfit for transplant but motivated to attempt intensive therapy. This regimen should be
considered for patients who are ECOG 0-2 and ambulatory. All other non-transplant eligible patients should be offered WBRT and or palliation alone.

1) Not chemotherapy candidates due to CIRS score>6 or ECOG≥3 after dexamethasone therapy:
 a. palliative WBRT or
 b. best supportive palliative care only

2) Chemotherapy candidates with CIRS score=0-6 and ECOG 0-2:
 a. Cytarabine, Rituximab and Thiotepa x 2-4 cycles
 b. MATRIX x 2-4 cycles.
 c.

Restaging should be performed after 2 cycles of therapy. Patients who fail to achieve a radiological and/or clinical response after 2 cycles should be considered for palliation or referral for consolidation WBRT.

For a detailed description of recommended PCNSL treatment regimens, please refer to Appendix A, subheading VII, sections A and B.

For palliative therapy, doses of cranial radiotherapy should be 30Gy in 10-20 fractions.

Eye lymphoma

Orbital or peri-orbital lymphoma[^230][^266]: Peri-orbital lymphoma of the bony orbit or the soft tissues in and around the orbit but outside of the globe and optic nerve should be managed as indicated in the earlier sections on aggressive lymphomas, marginal zone lymphomas or follicular lymphoma, as appropriate for the type and stage of the lymphoma. Approximately 40% of such patients have advanced disease discovered when carefully staged. In general, 25-30Gy/20 fractions radiotherapy to whole orbit/periorbital tissue is recommended for indolent peri-orbital lymphomas.

Conjunctival lymphoma[^230][^266]: Lymphoma involving the conjunctiva but not the structures within the globe or the optic nerve is usually of low grade and should be treated with 25-30Gy/20 fractions of radiotherapy. Doses, fields, and shielding specifically modified for treatment of the eye are necessary to minimize long-term complications such as xerophthalmia or cataract formation.

Intra-ocular and optic nerve lymphoma[^230][^267]:
- Lymphoma involving the vitreous, retina or other structures within the optic nerve or globe is usually of large cell type and is equivalent to PCNSL. Bilateral involvement is common. Evaluation and management should be the same as for PCNSL. Acceptable treatment involves induction chemotherapy with high dose methotrexate and high dose cytarabine as described for PCNSL in Appendix A.
• Lymphoma involving the uveal structures (choroid) is a rare presentation of lymphoma, and is usually of indolent type. This disease is best managed with treatment appropriate for stage and local extent of disease.

Aggressive T-Cell Lymphomas:

NK/T-cell lymphoma, nasal type

Natural killer (NK)/T-cell lymphoma, nasal type is a rare and aggressive extranodal neoplasm that almost exclusively affects Asian and South American adults in the fifth decade of life, with a male:female ratio of approximately 3:1. It typically arises in the nasal cavity or surrounding structures, such as the sinuses, palate, nasopharynx, tonsils, hypopharynx, and larynx. While the pathogenesis of NK/T-cell lymphoma, nasal type is not well understood, the Epstein-Barr virus (EBV) is implicated in almost all cases. Approximately 25% of cases show a p53 mutation; in addition, p21 overexpression is also frequent in nasal NK/T-cell lymphoma, and seems to be independent of p53 gene status.

Hematopathological evaluation of a biopsy specimen from the site of involvement is the basis for diagnosis of nasal NK/T-cell lymphoma. The recommended immunohistochemistry panel includes:

- B-cell: CD20
- T-lineage antigens: CD2, CD7, CD8, CD4, CD5, CD3
- NK lineage markers: CD56
- Cytotoxic granules (granzyme B and/or TIA-1)
- Ki-67
- In situ hybridization for EBV-encoded RNA (EBER)

For patients with early-stage nasal NK/T-cell lymphoma (ENKTCL), early or upfront radiotherapy (intensive regimens such as a total dose ≥ 50 Gy) plays an essential role in therapy, and has been associated with higher overall survival and complete response rates compared to chemotherapy alone. However, radiotherapy alone is also associated with high relapse rates. Combined modality therapy is recommended with sequential and concurrent chemo-radiotherapy regimens having relatively equivalent outcomes. No standard of care therapy exists for ENKTCL with our guidelines previously recommending VIPD consolidation after concurrent single agent cisplatin and radiotherapy. Local outcomes were poor with this approach and most novel regimens incorporate L-asparaginase into treatment due to high single agent activity. Given the recent discontinuation of L-asparaginase, we favour the combination of peg-asparaginase with gemcitabine and oxaliplatin (P-GEMOX) for patients with limited stage disease. With this approach, treatment is initiated with 2 cycles of P-GEMOX, followed by radiotherapy (48-56 Gy) followed by 2 further cycles of P-GEMOX restarted 1 week after completion of radiotherapy. With this approach, in 33 patients, the ORR was
94% and 2 year PFS and OS were 77% and 83% respectively. Notably, Grade 3-4 toxicities were rare.

For patients with stage III-IV disease, complete remission rates are less than 15%, and the median overall survival is approximately 4 months. The recommended options for therapy include either enrollment in a clinical trial or treatment with an L-asparaginase-based combination chemotherapy regimen. The most well-studied regimen is the SMILE regimen with several small series of patients reported. While the SMILE regimen was first reported to have excellent response rates (overall, and complete in 79% and 45%, respectively) in relapsed/refractory patients, an updated study of the use of the SMILE regimen as frontline therapy for advanced stage patients reported a short median OS (12.2 months; 1-year OS was 45%) with a high rate of TRM (5 of 87 patients died of sepsis). While the GOLD regimen has less reported patients, the toxicity is significantly less (Grade 3-4 neutropenia of 16% compared to SMILE of 92% with serious infections in 4% and 31-45% of patients treated, respectively). For this reason, patients of advanced age or with comorbidities or a history of infections should be considered for therapy with GOLD for 2-4 cycles followed by SCT if possible while younger, fit patients can be treated with SMILE x 2 cycles with a goal of proceeding to SCT as consolidation. The role of allogeneic or autologous SCT is not yet well defined because of limited data; but it is suggested when possible for advanced stage or relapsed/refractory patients.

Peripheral T-cell lymphomas (PTCL)

With the exception of ALK-positive anaplastic large cell lymphoma, CHOP chemotherapy cures less than 30% of patients with PTCL. Options that may be associated with higher cure rates include CHOP x 4-6 cycles followed by HDCT/ASCT in responding patients or brentuximab-vedotin + CHP or intensification of CHOP with etoposide (CHOEP).

The ECHELON-2 study was a Phase 3 of CD30+ (≥ 10% by immunohistochemistry) PTCL with IPI ≥ 2 comparing CHOP with BV-CHP. The median PFS was improved with BV-CHP at 48.2 months compared to 20.8 months with CHOP. Overall survival was also numerically superior in the BV-CHP arm. Important toxicities were comparable between the arms. Unfortunately, the study was not powered to detect differences between the different subtypes of PTCL and the study was biased to include a majority of patients with ALCL (70%). Patients with ALK+ ALCL were 22% of the population and had the largest noted benefit from the addition of BV-CHP. The subgroup of AITL patients appeared to do slightly worse with BV-CHP compared to CHOP but patient numbers were small. Given the lack of single agent efficacy in non-anaplastic subtypes, it remains unclear if there is any benefit to BV-CHF in non-anaplastic subtypes of PTCL such that it can not be recommended that BV be routinely implemented for those patients at this time.

The German High-Grade Non-Hodgkin Lymphoma Study Group (DSHNHL) analyzed results of 343 PTCL patients treated within their trials. The majority belonged to the four major T-cell lymphoma subtypes: anaplastic large cell lymphoma (ALCL), ALK-positive (n=78); ALCL, ALK-negative (n=113);
peripheral T-cell lymphoma, unspecified (PTCLU; n=70); and angioimmunoblastic T-cell lymphoma (AITL; n=28). Treatment consisted of 6-8 courses of CHOP or CHOP plus etoposide (CHOEP). Three-year event-free and overall survival rates were 75.8% and 89.8% for the ALCL, ALK-positive patients, 50.0% and 67.5% for the AITL patients, 45.7% and 62.1% for the ALCL, ALK-negative patients, and 41.1% and 53.9% for the PTCLU patients. The International Prognostic Index (IPI) was effective in defining risk groups with significantly different outcomes. For patients, 60 years of age or younger with LDH levels ≤ upper normal value, etoposide was associated with an improvement in 3-year EFS (75.4% vs. 51.0%, p=0.0003). Aviles and colleagues recently reported the results of a phase III trial involving 217 patients with PTCL unspecified. Patients were treated with either CMED every 14 days x 6 cycles or standard CHOP. The 10-year PFS was 70% in the CMED group versus 43% in the CHOP group (p<0.01), and the 10-year OS was 60% in the CMED group versus 34% in the CHOP group (p<0.01).

Retrospective and prospective phase II trials support the use of SCT as part of upfront therapy for PTCL. Sieniawski and colleagues reported 5-year PFS rates of 60% for 26 patients with enteropathy associated T-cell lymphoma treated with IVE-methotrexate induction therapy followed by autologous SCT, compared to only 22% for 54 patients treated with CHOP-like therapy alone. Two prospective trials have also been reported. In the first, Reimer and colleagues reported results of CHOP x 4-6 cycles followed by dexabeam or ESHAP followed by CyTBI/ASCT for 83 patients (including 32 with PTCL-not otherwise specified, and 27 with angioimmunoblastic T-cell lymphoma). Fifty-five of the 83 patients received transplantation. In an intent-to-treat analysis, with a median follow-up time of 33 months, the estimated 3-year OS, DFS, and PFS rate were 48%, 53%, and 36%, respectively. In the second prospective trial, Rodriguez and colleagues from the Spanish Lymphoma and Autologous Transplantation Cooperative Group reported the results of 74 patients transplanted in the first complete response (65% had 2-3 aaIPI risk factors). With a median follow-up of 67 months from diagnosis, the 5-year OS and PFS rates were 68% and 63%, respectively.

For PTCL patients who relapse following CHOP-type induction and respond to salvage therapy, ASCT should be recommended, as several studies report similar ASCT outcomes to those seen with relapsed DLBCL. Brentuximab vedotin may be considered for those patients with CD30+ anaplastic large cell lymphoma who have had failure of initial chemotherapy.

For patients who are ineligible for ASCT or who have failed ASCT, PFS and OS is extremely short and end of life care and planning should be implemented. Palliative therapy options include chemotherapy (with limited expectation of response or benefit), romidepsin and/or pralatrexate.

Alberta has funded only 1 of romidepsin or pralatrexate despite these agents have non-overlapping mechanisms of action for reasons of cost (due to unavailability of published data for responses to either drug in patients who failed the alternate). No quality evidence exists to direct the decision.
between romidepsin and pralatrexate however, durables responses to romidepsin have been most commonly seen in patients with AITL, favouring romidepsin in that group.

An open-label, single arm, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma (N=130) with a median two (range: 1-8) prior systemic therapies found an objective response rate of 25%, including 15% with CR/CRu. An evaluation of longer term follow-up found median duration of response was 28 months (range: 1 to >48 months). Patients who achieved CR/CRu had a median PFS of 29 months. The most common grade ≥3 AEs were thrombocytopenia (24%), neutropenia (20%), and infections (all types, 19%). Another phase II study of romidepsin in cutaneous and peripheral T-cell lymphoma (N=45; median 3 prior therapies) found complete response in n=8 and partial response in n=9 for an overall response rate of 38% (95%CI: 24-53%). Median duration of overall response was 8.9 months (range: 2-74). Of note, 6 of the 18 responses were among patients with prior stem-cell transplant.

The prospective PROPEL trial evaluated the effectiveness of pralatrexate in patients with relapsed or refractory peripheral T-cell lymphoma. N=111 patients received pralatrexate after a median 3 prior therapies (range: 1-12). The overall response rate was 29% with 11% achieving complete response. The median duration of response was 10.1 months. Median PFS and OS were 3.5 months and 14.5 months, respectively. The most common grade ≥3 AEs were thrombocytopenia (32%), mucositis (22%), and anemia (18%).

Summary of treatment recommendations for PTCL.

1. Anaplastic large cell lymphoma:
 a. ALK positive: BV-CHP x 6 cycles
 b. ALK negative: IPI 0-2: BV-CHP x 6 cycles
 IPI 3-5: BV-CHP x 6 cycles + HDCT/ASCT if eligible

2. All other subtypes of PTCL:
 - <60 years of age with IPI=0-2: CHOEP x 6 cycles
 - <60 years of age with IPI=3-5: CHOP or CHOEP x 4 cycles, then HDCT/ASCT
 - >60 years of age: CHOP or CEOP x 6 cycles +/- HDCT/ASCT

3. NK/T-cell lymphoma, nasal type:
 - recommendation for stage I-II NK/T cell lymphoma: P-GEMOX x 2 cycles (then IFRT (48-56 Gy) then 1 week later, 2 further cycles P-GEMOX (total 4 cycles)

AIDS-related lymphomas:

In general, the treatment of AIDS-related lymphoma should be the same as for non-AIDS related lymphoma if the AIDS does not otherwise compromise the patient’s performance status and he/she is free of coincident serious opportunistic infection. HAART should be given with CHOP chemotherapy. Treatment should be planned in conjunction with the patient’s HIV physician and an antiviral regimen without overlapping toxicity should be chosen. R-CHOP results in the highest rates of disease-free
survival, but may also increase the risk of infectious complications and treatment-related mortality in patients with CD4 counts below 50.

Post-transplant lymphoproliferative disease (PTLD) after Solid Organ Transplant in Adults:

1. **Epidemiology.** Post-transplant lymphoproliferative disorder (PTLD) is a heterogeneous disease with clinical and pathologic manifestations ranging from benign lymphoid hyperplasia (ie. early lesions) to aggressive lymphoma (ie. monomorphic PTLD)\(^{306,307}\). PTLD and its treatment cause a high rate of mortality and graft loss in patients with solid organ transplants (SOT)\(^{308}\). The incidence of PTLD is highest in multivisceral (>10%) and lowest in renal transplants (1-5%), attributed to intensity of immunosuppression and amount of lymphoid tissue in the allograft\(^{309-311}\). Epstein-Barr virus (EBV) infection drives the pathogenesis in PTLDs occurring early post-transplant; conversely, PTLDs occurring after prolonged immunosuppression tend to be monomorphic with no detectable EBV genome, calling an infectious etiology into question\(^{312}\). An epidemiologic shift in PTLD has occurred in the most recent decade: the median latency time from transplant to PTLD has increased from 1 to 3 years\(^{313,314}\) and the proportion of EBV-positive vs. -negative PTLD has decreased\(^{315}\), attributed to EBV viral load monitoring in EBV seronegative (ie. high risk) patients.

2. **Diagnosis and staging.** Diagnostic tissue must be reviewed by expert pathologists and subtyped according to the WHO\(^{316}\). Several small case series have confirmed that PET-CT is an effective imaging modality for staging in PTLD\(^{317-322}\). However, some subtypes of PTLD, such as early lesions and T-cell lymphomas, may not be FDG-avid, necessitating CT as an alternate staging modality.

3. **Management.** Recommendations for the management of PTLD in SOT are based on few phase II clinical trials, retrospective case series, and expert opinion\(^{323-325}\). The mainstays of therapy for CD20-positive PTLD in SOT include reduction of immune suppression (RIS), rituximab, and chemotherapy; adoptive immunotherapy is promising but considered experimental and is unavailable in Alberta. All patients should undergo RIS to the lowest tolerated levels under the direction of the transplant physician as soon as the diagnosis of PTLD is confirmed\(^{323}\). A recommended strategy is to discontinue antiproliferative agents and reduce the calcineurin inhibitor by 25-50% while maintaining the steroid\(^{323}\). Published response rates vary widely (0-73%) and responses are seen within 2 to 4 weeks\(^{326-328}\).

3a. **Early lesions, polymorphic and CD20-positive monomorphic PTLD.** RIS may serve as definitive treatment of early lesions, but if response is incomplete further treatment with surgery or radiation is favored. In contrast, polymorphic and monomorphic PTLDs require definitive treatment along with RIS, discussed in further detail below\(^{323-325}\) (Figure 3).

Surgery and radiation. Patients with localized PTLD, such as isolated skin, GI or renal allograft lesions, can achieve prolonged remissions with surgery or localized radiation\(^{326,329}\). Some experts
consider surgical resection of isolated GI lesions prior to initiating systemic therapy to reduce early mortality from bowel perforation324. Radiation alone is generally not curative, with exception of plasmacytoma-like PTLD330, and should not be used as primary treatment323. Radiation may be used for palliating obstructive or compressive symptoms where systemic therapy fails or is not possible323.

\textit{Chemotherapy}. SOT patients do not tolerate chemotherapy well, often developing severe infection or prolonged cytopenias. Estimates of efficacy of chemotherapy in treatment of PTLD in SOT are limited by the almost entirely retrospective nature of publications. Results of retrospective studies of anthracycline-based chemotherapy, mainly CHOP, show ORRs of 65-73\% and 5-year OS of 25-78\%; however, treatment-related mortality (TRM) is up to 31\%331-335.

\textit{Rituximab}. Several retrospective reviews and phase II clinical trials have confirmed the efficacy of rituximab monotherapy in CD20-positive PTLD post-SOT in patients that fail to respond to RIS. Phase II trials show overall response rates (ORR) of 44\% to 71\% and CR rates of 26\% to 53\% after 4 weekly doses with no reported TRM336-339. However, 57\% of patients treated with rituximab monotherapy in 2 prospective trials had progressive disease within 12 months; risk factors for survival and need for further treatment included age > 60, ECOG ≥ 2, elevated LDH, and lack of CR after rituximab340. Therefore rituximab causes minimal toxicity but remissions achieved are durable in only a minority of patients.

\textit{Sequential therapy}. Efficacy of a sequential treatment regimen (4 weekly doses of rituximab followed by 4 cycles of CHOP) was established in a phase II international multicentre trial in adult CD20-positive PTLD in SOT (n=70) in an attempt to improve upon the success of rituximab monotherapy and diminish the toxicity of chemotherapy341. The ORR was 60\% after initial rituximab, increasing to 90\% after sequential chemotherapy. EBV-positive and –negative PTLDs responded equally. OS was 61\% at 3 years and time to progression was 69\% at 3 years. There were no TRM events related to rituximab and 11\% ascribed to CHOP. In a subsequent analysis, the authors concluded that patients who achieved CR and those in PR with a low-risk IPI score after rituximab monotherapy had a low risk of disease progression342.

A subsequent phase II trial utilized risk-stratified sequential therapy, in which patients in CR (by CT) after 4 doses of rituximab received 4 further 3-weekly doses of rituximab, and those not in CR after initial rituximab proceeded to RCHOP (4 cycles supported with GCSF). With 152 patients treated, endpoints were superior to sequential therapy (3-year OS 70\%, 3-year TTP 73\%, TRM 7\%), and response to initial rituximab was highly predictive of OS, TTP and PFS (p<0.001)343, 344.

In summary, rituximab monotherapy is effective first-line treatment in most CD20-positive PTLDs with minimal toxicity. Risk-stratified sequential therapy offers the highest survival rates published to date, and allows patients in CR after rituximab monotherapy to avoid chemotherapy. Close follow-up for disease progression is recommended for patients that received rituximab alone. For PTLD that
behaves aggressively (ie. IPI 3-5) or progresses during initial treatment with rituximab, proceed directly to RCHOP before completing 4 doses of rituximab (Figure 3).

3b. Primary CNS PTLD. In the largest reported retrospective series of primary CNS PTLD (n=84), patients treated with rituximab and/or cytarabine (most often given after MTX) survived longer, but significant variation in regimens precluded firm conclusions345. Patients with acceptable renal function and performance status should be offered high-dose methotrexate and rituximab, and others may benefit from palliative radiation324, 345.

3c. Burkitt Lymphoma PTLD. Several case series cite acceptable outcomes in this rare subtype of PTLD with chemotherapy regimens ranging in intensity346-348. However, no definite recommendations can be made and treatment should be considered individually.

3d. CD20-negative monomorphic PTLDs. Rare subtypes of PTLD that resemble non-transplant lymphomas, such as Hodgkin Lymphoma-like PTLD, T cell monomorphic PTLD, plasmablastic PTLD and plasma cell dyscrasias, require specific chemotherapeutic treatment similar to their non-transplant counterparts (reviewed by323, 324).

4. Prognosis. The risk of death from NHL is significantly higher in SOT compared to non-transplant patients349, and PTLD increases the graft failure rate 5-fold350. Retrospective series of PTLD post-SOT report OS of 30-68% at 5 years, with excess mortality in the first year post-diagnosis309, 314, 351-353. Adverse prognostic factors from retrospective studies include monomorphic subtype, monomorphic T-cell, bone marrow or CNS involvement, advanced stage, poor performance status, advanced age, elevated LDH, and hypoalbuminemia313, 314, 337, 353-355. Risk factors for worsened OS in the PTLD-1 prospective trial include IPI 3-5, thoracic organ transplant and lack of CR after rituximab monotherapy342. A prognostic score developed from 500 PTLD cases in renal transplant patients is described in Table 8; the score was calculated with the exclusion of patients with monomorphic T-cell and CNS PTLD, both of which carried an adverse prognosis, but the score maintains its ability to discriminate risk groups in the whole population350.

Last Reviewed: June 2022
Figure 1. Treatment Algorithm for Polymorphic or Monomorphic (DLBCL) PTLD Post-SOT

Table 8. Post-Transplant Lymphoproliferative Disorders in Renal Transplant Prognostic Score (148). (One point is given for each of elevated LDH, disseminated PTLD (ie. higher than stage 1), monomorphic PTLD, and serum creatinine level >133 µmol/L; 2 points are given for creatinine >133 µmol/L if age > 55 at PTLD diagnosis.)

<table>
<thead>
<tr>
<th>Risk Group (# Risk Factors)</th>
<th>% Alive at 1/5/10 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (0)</td>
<td>100/92/85</td>
</tr>
<tr>
<td>Moderate (1)</td>
<td>89/83/80</td>
</tr>
<tr>
<td>High (2-3)</td>
<td>74/59/56</td>
</tr>
<tr>
<td>Very High (4-5)</td>
<td>52/35/0</td>
</tr>
</tbody>
</table>
References

95. Abramson J. Pivotal safety and efficacy results from fety and efficacy results from TRANSCEND NHL001, a multicenter phase 1 study of lisocabtagene maraleucel (liso-cel) in relapsed/refractory (R/R) large B-cell lymphomas. 2019:Abstract 241.

104. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H. *World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues.* International Agency for Research on Cancer (iARC); 2008.

Santini G, Sweetenham JW, Simnett S. Autologous stem cell transplantation in first remission improves outcome in adult patients with lymphoblastic lymphoma: results from a randomized trial of the European group for blood and marrow transplantation (EBMT) and the UK lymphoma group (UKLG). *Bone Marrow Transplant*. 1998;21(European Group for Blood and Bone Marrow Transplantation Meeting Abstracts);Abstract 624.

Milpied N, Attal M, Gisselbrecht C. Lymphoblastic lymphoma: What is the best time for transplantation (BMT). A study from SFGM. . *Bone Marrow Transplant*. 1998;21(European Group for Blood and Bone Marrow Transplantation Meeting Abstracts);Abstract 597.

Last Reviewed: June 2022

www.ahs.ca/guru

Last Reviewed: June 2022

www.ahs.ca/guru
IV. Cutaneous Lymphomas

Table 1. Classification criteria of primary cutaneous lymphomas (WHO 2016)

<table>
<thead>
<tr>
<th>Disease entity</th>
<th>Subtype</th>
<th>Minimum diagnostic workup</th>
<th>Other useful diagnostic tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Cutaneous T-Cell Lymphomas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mycosis fungoides (MF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Classic MF*</td>
<td>Clinico-pathological correlation supported by immunohistochemistry (CD3, CD4, CD8, CD30) and clonality by TCRr</td>
<td>• IHC: CD2, CD5, CD7, PD1</td>
<td></td>
</tr>
<tr>
<td>• Folliculotrop MF</td>
<td>Large cell transformation (>25%) to be noted if present</td>
<td>• DUSP22-IRF4 translocations (tumor stage)1</td>
<td></td>
</tr>
<tr>
<td>• Pagetoid reticulosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Granulomatous slack skin disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sezary’s syndrome (SS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clinico-pathological correlation supported by:</td>
<td>PD-1 (IHC and FC) Blood: CD5, CD7, CD26, CCR4, CD158k, Sezary cell absolute count in blood smear</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• skin biopsy (IHC and TCRr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• blood: CD4/CD8 ratio (FC), clonality by TCRr or TCRVbeta chain Abs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary cutaneous CD30+ lymphoproliferative disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• lymphomatoid papulosis (LyP, types A,B,C,D,E)</td>
<td>Typical skin lesions and histopathology</td>
<td>IHC: CD2,3,5,CD7,CD15, TIA-1, granzymeB, CD56, betaF1, MUM-1</td>
<td></td>
</tr>
<tr>
<td>• pcALCL (anaplastic large cell lymphoma)</td>
<td>IHC: CD3, CD4, CD8, CD30, ALK ,EMA</td>
<td>FISH: 6p25 rearrangement (DUSP22-IRF4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• TCRr</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subcutaneous panniculitis-like T-cell lymphoma (SPTCL)</td>
<td>Typical skin lesions and histopathology</td>
<td>IHC: granyme B, TCR-gamma.(-)1 betaF1,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• IHC: CD3, CD8,CD4,TIA-1 , CD56, CD30, EBER</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TCRr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBV-associated T-cell especially extranodal NK/T cell lymphoma</td>
<td>nasal type angioimmunoblastic hydroa vacciniforme-like lymphoproliferative disorder</td>
<td>EBER by ISH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CD3,CD56,CD4,CD8, CD2,CD5,CD7</td>
<td>IHC: TIA-1, granzymeB, CD56, CD21,PD-1, CXCL13, CD10, bcl-6, CD20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• EBV antibody profile and DNA load</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TCR and IgH clonality status</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary cutaneous acral CD8+ lymphoma</td>
<td>Typical skin lesions and histopathology</td>
<td>IHC: TIA-1 granzymeB, perforin, KI67, betaF1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• IHC: CD4,CD8,CD3, CD2,CD7 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TCRr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pc CD8+ aggressive epidermotropic cytotoxic T-cell lymphoma</td>
<td>Typical skin lesions and histopathology</td>
<td>IHC: TCR-gamma, granzymeB, perforin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• IHC: CD2, 3, 4, 5, 7, 8, 15, 30, 45RA, TIA-1, CD56, betaF1, EBER by FISH</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TCRr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pc gamma-delta T-cell lymphoma</td>
<td>IHC: CD2, 3, 4, 5, 7, 8, 30, 45RA, TIA-1, CD56, betaF1, EBER by ISH</td>
<td>IHC: TCR-gamma, granzymeB, perforin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TCRr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*not included in formal WHO classification of pc lymphomas
1 DUSP22-IRF4 translocation FISH assay is not routinely available in Alberta
<table>
<thead>
<tr>
<th>Condition</th>
<th>Clinical Picture</th>
<th>Immunohistochemistry</th>
<th>Other Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>pc CD4+ small/medium cell T-cell lymphoproliferative disorder</td>
<td>• Clinical picture, sudden</td>
<td>• CD4, CD8, CD3, PD-1, CD30, CD7, CD56, TIA-1, CD20</td>
<td>• IHC: CXCL13, BCL6</td>
</tr>
<tr>
<td>pcPTL NOS</td>
<td>IHC: CD2, 3, 4, 5, 7, 8, 30., TIA-1, CD56, betaF1, EBER by FISH</td>
<td>• IHC: TCR-gamma, granzymeB, CXCL13, CD10, bcl-6, CD20</td>
<td></td>
</tr>
<tr>
<td>Primary Cutaneous B-Cell Lymphomas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pc follicle center lymphoma (pc FCL)</td>
<td>• Typical skin lesions and histopathology—R/O EBV+ mucocutaneous ulcer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pc diffuse large B-cell lymphoma, leg type</td>
<td>• IHC: CD3, CD5, CD20, CD10, bcl-2, bcl-6, MUM-1, kappa/lambda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Lymphomas Presenting In The Skin (Not Included In WHO2016 Classification)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intravascular B-cell lymphoma</td>
<td>• Intravascular B-cell lymphoma*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blastic plasmacytoid dendritic cell neoplasm (BPDCN)</td>
<td>This is not a mature lymphoid neoplasm as per the 2016 WHO classification, but may present with prominent skin disease</td>
<td></td>
<td>granzymeB, TCL-1, CD303 TCR-gamma, βF1</td>
</tr>
<tr>
<td>Adult T-cell leukemia lymphoma</td>
<td>Smoldering and chronic forms are skin-presenting illnesses with mild systemic signs</td>
<td></td>
<td>FOXP3 by IHC</td>
</tr>
<tr>
<td>T<sub>FH</sub> lymphoma</td>
<td>IHC: CD2, 3, 4, 5, 7, 8, 10, 30, PD-1 TCRr</td>
<td></td>
<td>IHC: ICOS, bcl-6, CXCL13, bcl</td>
</tr>
<tr>
<td>Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue</td>
<td>• Typical skin lesions and histopathology</td>
<td></td>
<td>CD138, Ki-67, Cyclin D1, CD79a, CD21, CD23, CD4, CD8, PD1</td>
</tr>
</tbody>
</table>

Abbreviations: Pc = primary cutaneous, IHC = immunohistochemistry, TCRr = TCR rearrangement, FC = flow cytometry.
Table 2. Mycosis Fungoides and Sézary’s Syndrome Staging (2007 ISCL/EORTC)

<table>
<thead>
<tr>
<th>Classification</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (skin)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0</td>
<td>No clinically and/or histopathologically suspicious lesions</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>Limited patches, papules, and/or plaques covering <10% of the skin surface.</td>
<td>Patch indicates any size skin lesion without significant elevation or induration whereas a plaque is elevated or indurated. Presence/absence of hypo- or hyperpigmentation, scale, crusting, poikiloderma or ulceration should be noted. Tumor indicates at least one 1-cm diameter solid or nodular lesion with evidence of depth and/or vertical growth. Note total number and volume of lesions, largest size lesion, and region of body involved.</td>
</tr>
<tr>
<td>T1a</td>
<td>patch only</td>
<td></td>
</tr>
<tr>
<td>T1b</td>
<td>plaque +/- patch</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>Patches, papules or plaques covering >= 10% of the skin surface.</td>
<td></td>
</tr>
<tr>
<td>T2a</td>
<td>patch only</td>
<td></td>
</tr>
<tr>
<td>T2b</td>
<td>plaque +/- patch</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>One or more tumors (>=1-cm diameter)</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>Confluence of erythema covering >=80% body surface area</td>
<td></td>
</tr>
<tr>
<td>N (lymph nodes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>No clinically abnormal peripheral lymph nodes</td>
<td>Abnormal peripheral lymph node indicates any palpable peripheral node that on physical examination is firm, irregular, clustered, fixed or 1.5 cm or larger in diameter. Node groups examined on physical examination include cervical, supraclavicular, epitrochlear, axillary, and inguinal. Central nodes, which are not generally amenable to pathologic assessment, are not currently considered in the nodal classification unless used to establish N3 histopathologically.</td>
</tr>
<tr>
<td>N1</td>
<td>Clinically abnormal peripheral lymph nodes; histopathology Dutch grade 1 or NCI LN0-2.</td>
<td></td>
</tr>
<tr>
<td>N1a – clone negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1b – clone positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>Clinically abnormal peripheral lymph nodes; histopathology Dutch grade 2 or NCI LN3</td>
<td></td>
</tr>
<tr>
<td>N2a – clone negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2b – clone positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3</td>
<td>Clinically abnormal peripheral lymph nodes; histopathology Dutch grades 3-4 or NCI LN4; clone positive or negative</td>
<td></td>
</tr>
<tr>
<td>Nx</td>
<td>Clinically abnormal peripheral lymph nodes; no histologic confirmation</td>
<td></td>
</tr>
<tr>
<td>B (peripheral blood)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B0</td>
<td>Absence of significant blood involvement: <=5% of peripheral blood lymphocytes are atypical (Sézary) cells</td>
<td>For blood, Sézary cells are defined as lymphocytes with hyperconvoluted cerebriform nuclei. Alternatives to Sézary cell count: (1) expanded CD4+ or CD3+ cells with CD4/CD8 ratio of 10 or more, (2) expanded CD4+ cells with abnormal immunophenotype including loss of CD7 or CD26</td>
</tr>
<tr>
<td>B0a – clone negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B0b – clone positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>Low blood tumor burden: >5% of peripheral blood lymphocytes are atypical (Sézary) cells but does not meet the criteria of B2</td>
<td></td>
</tr>
<tr>
<td>B1a – clone negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1b – clone positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>High blood tumor burden: =>1000/uL Sézary cells with positive clone</td>
<td></td>
</tr>
<tr>
<td>M (visceral organs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M0</td>
<td>No visceral organ involvement</td>
<td>For viscera, spleen and liver may be diagnosed by imaging criteria</td>
</tr>
<tr>
<td>M1</td>
<td>Visceral involvement (must have pathology confirmation and organ involved should be specified)</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Staging of mycosis fungoides and Sezary’s syndrome

<table>
<thead>
<tr>
<th>Staging</th>
<th>T</th>
<th>N</th>
<th>M</th>
<th>B</th>
<th>5-year DSS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0,1</td>
<td>98</td>
</tr>
<tr>
<td>IB</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0,1</td>
<td>89</td>
</tr>
<tr>
<td>IIA</td>
<td>1-2</td>
<td>1,2</td>
<td>0</td>
<td>0,1</td>
<td>89</td>
</tr>
<tr>
<td>IIB</td>
<td>3</td>
<td>0-2</td>
<td>0</td>
<td>0,1</td>
<td>56</td>
</tr>
<tr>
<td>IIIA</td>
<td>4</td>
<td>0-2</td>
<td>0</td>
<td>0</td>
<td>54</td>
</tr>
<tr>
<td>IIIB</td>
<td>4</td>
<td>0-2</td>
<td>0</td>
<td>1</td>
<td>48</td>
</tr>
<tr>
<td>IVA1</td>
<td>1-4</td>
<td>0-2</td>
<td>0</td>
<td>2</td>
<td>41</td>
</tr>
<tr>
<td>IVA2</td>
<td>1-4</td>
<td>3</td>
<td>0</td>
<td>0-2</td>
<td>23</td>
</tr>
<tr>
<td>IVB</td>
<td>1-4</td>
<td>0-3</td>
<td>1</td>
<td>0-2</td>
<td>18</td>
</tr>
</tbody>
</table>

Staging procedures for Mycosis Fungiodes/Sezary Syndrome

- **Complete physical examination:** Describe type size of skin lesions, estimate percentage of body surface area involved, presence of palpable lymph nodes, and organomegaly
- **Skin biopsy:** At least one biopsy required, several concurrent biopsies may be indicated
- **Blood tests:** CBC with differential, liver function tests, creatinine, LDH. Peripheral blood flow cytometry and molecular studies for TCR gene rearrangement in cases of suspected Sezary Syndrome
- **Imaging:** For MF stage IA no additional imaging techniques are necessary. For patients with MF stage II or higher imaging including CT scan of chest, abdomen, and pelvis and/or FDG-PET scan are recommended. Full body imaging for MF stage IB (T2N0M0) is discretionary, and simple CXR and select U/S imaging may be adequate
- **Lymph node biopsy:** Biopsy of enlarged (>1.5cm) or abnormal lymph node. Preference given for nodes with abnormal uptake on FDG-PET. Excisional biopsy is preferred in cases of MF in order to reliably discriminate dermatopathic lymphadenopathy from that involved with lymphoma
- **Bone marrow biopsy:** Bone marrow biopsy and aspiration is not a routinely recommended procedure in MF unless a patient has stage IV disease (B2)

Treatment of mycosis fungoides/sezary syndrome

Overview

MF at early stages (I-IIIA) should preferentially be treated with skin-directed therapies (SDT) including phototherapy, topical steroids, nitrogen mustard. Treatment can be combined with biological
response modifiers (IFN-\(\alpha\), retinoids) in cases of resistant or progressive skin disease. Local radiotherapy plays a key role in palliation and treating sanctuary sites. Total skin electron beam therapy is highly effective in T2 or T3 disease however its widespread use is limited by the availability of this technique. Predictably, chemotherapy leads to short remission durations and therefore should be reserved after other therapies have been tried. Its use should be limited to tumour (T3) or more advanced stages. It may be considered frontline in cases with histologic large-cell transformation and high risk features (see discussion below). Monotherapy (low-dose methotrexate, gemcitabine) is generally preferred over combination chemotherapy (e.g. CHOP) unless the patient has extensive burden of disease (nodal and extra-cutaneous and is fit to tolerate. Targeted therapies have demonstrated activity in MF/SS, and are currently reserved for the relapsed/refractory setting or in clinical trials. The optimal conditions for allogenic bone marrow transplant have not been elucidated, but may play a role in highly selected cases (see discussion below). Extracorporeal photopheresis is a unique treatment modality indicated for the treatment of erythrodermic MF/SS. Consensus recommendations for the treatment of MF/SS have recently been updated and are outlined elsewhere\(^{30}\). The following table intends to summarize a management approach.

Table 4. Treatment of mycosis fungoides\(^{1, 2, 7-9, 12, 14, 24, 30-33}\)

<table>
<thead>
<tr>
<th>Therapy</th>
<th>Mycosis Fungoides</th>
<th>SS/E-MF</th>
<th>Dose and potential toxicities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Early stage disease</td>
<td>Advanced stage disease</td>
<td></td>
</tr>
<tr>
<td>Expectant policy</td>
<td>++</td>
<td>(+)</td>
<td>Suitable for stage I in conjunction with symptomatic treatment if required. Patient with single lesion can be considered for RT for “curative therapy”</td>
</tr>
<tr>
<td>Topical Corticosteroids</td>
<td>++++</td>
<td>++</td>
<td>Potent steroids such as Clobetasol/betamethasone, long term use can cause side effects such as skin atrophy</td>
</tr>
<tr>
<td>PUVA</td>
<td>+++</td>
<td>(+)</td>
<td>For patch/plaque disease.2-3 X week. Limited availability, available only in Edmonton/Calgary. Risk of skin cancer with cumulative dosing</td>
</tr>
<tr>
<td>UVB</td>
<td>++++</td>
<td>(+)</td>
<td>For thin patch only, as skin penetration not as deep, 2-3 x week. Risk of skin cancer with cumulative dosing</td>
</tr>
<tr>
<td>Topical Carmustine</td>
<td>++</td>
<td>(+++)</td>
<td>Has to be compounded. Erythema, mostly mild but can be severe</td>
</tr>
<tr>
<td>Oral Bexarotene</td>
<td>++</td>
<td>(+++)</td>
<td>200 to 300mg/M2, orally</td>
</tr>
</tbody>
</table>

Last Reviewed: February 2018
www.ahs.ca/guru
daily. Responses can be durable. Most common side effects are hypertriglyceridemia and hypothyroidism usually requiring treatment and have to be monitored regularly. Not available in Canada, requires SAP.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Rating</th>
<th>Side Effects</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interferon alpha</td>
<td>++</td>
<td>+++</td>
<td>3-5 MU/d or 3 x week. Difficult tolerating the drug, cytopenias, thyroid disturbance, mood changes. It can be combined with PUVA, ECP, and Retinoid.</td>
</tr>
<tr>
<td>HDACi: Vorinostat, romidepsin</td>
<td>+</td>
<td>+++</td>
<td>Vorinostat, 400 mg po daily, S/E diarrhea, nausea, QT prolongation, cytopenias. Not on the Formulary, only through private insurance. Romidepsin-14mg/M2 iv day1,8,15 of a 28 day cycle, QT prolongation, metabolized by CYP3A4. Limited data in combination, can be used with ECP.</td>
</tr>
<tr>
<td>Oral Methotrexate</td>
<td>+</td>
<td>+++</td>
<td>20-30mg/week can be given up to 60-70 mg/week. Watch for cytopenias, liver dysfunction. Can be used in combination with ECP, PUVA, and IFN.</td>
</tr>
<tr>
<td>Localized radiotherapy</td>
<td>+++</td>
<td>+++</td>
<td>Localized plaques, tumors or nodules</td>
</tr>
<tr>
<td>TSEB</td>
<td>+</td>
<td>+++</td>
<td>For widespread disease. Can be repeated but high cumulative doses associated with skin toxicity. Patient to travel to Ontario.</td>
</tr>
<tr>
<td>ECP</td>
<td>++</td>
<td>+++</td>
<td>Available only in Calgary, needs IV access, which can be problematic</td>
</tr>
<tr>
<td>Alemtuzumab</td>
<td>+</td>
<td>+++</td>
<td>Available through Clinigen on compassionate basis. Low dose 10mg three times a week, may be effective decreasing the risk of infections</td>
</tr>
<tr>
<td>Brentuximab</td>
<td>+++</td>
<td></td>
<td>Shown to be effective with all levels of CD30</td>
</tr>
</tbody>
</table>
expression but responses significantly lower if CD30 expression less than 30%. Peripheral neuropathy, limiting side effect. 1.8mg/kg IV q every 3 weeks for up to 16 cycles

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Description</th>
<th>Beyond third line</th>
<th>Refractory Disease</th>
<th>Very selected cases</th>
<th>Use if available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single agent chemotherapy, Gemcitabine, liposomal Doxorubicin</td>
<td>+</td>
<td>++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combination chemotherapy such as CHOP</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allogenic Bone marrow transplant</td>
<td>+</td>
<td>++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Staging and treatment of non-MF cutaneous lymphomas\(^{19, 23, 25, 34}\)

Table 5. Diagnostic workup and staging

<table>
<thead>
<tr>
<th>Classification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T1 Solitary skin lesion</td>
</tr>
<tr>
<td></td>
<td>• T1a: a solitary lesion with diameter <5cm</td>
</tr>
<tr>
<td></td>
<td>• T1b: a solitary lesion with diameter >5cm</td>
</tr>
<tr>
<td>T2</td>
<td>Regional skin involvement (multiple lesions limited to 1 body region or 2 contiguous body regions)</td>
</tr>
<tr>
<td></td>
<td>• T2a: skin lesions present in a <15-cm diameter circular area</td>
</tr>
<tr>
<td></td>
<td>• T2b: skin lesions present in a >15-cm and <30-cm diameter circular area</td>
</tr>
<tr>
<td></td>
<td>• T2c: skin lesions present in a >30-cm diameter circular area</td>
</tr>
<tr>
<td>T3</td>
<td>Generalized skin involvement</td>
</tr>
<tr>
<td></td>
<td>• T3a: multiple lesions involving 2 noncontiguous body regions</td>
</tr>
<tr>
<td></td>
<td>• T3b: multiple lesions involving 3 or more body regions</td>
</tr>
<tr>
<td>N</td>
<td>N0 No clinical or pathologic lymph node involvement</td>
</tr>
<tr>
<td>N1</td>
<td>Involvement of 1 peripheral lymph node region that drains an area of current or prior skin involvement</td>
</tr>
<tr>
<td>N2</td>
<td>Involvement of 2 or more peripheral lymph node regions or involvement of any lymph node region that does not drain an area of current or prior skin involvement</td>
</tr>
<tr>
<td>N3</td>
<td>Involvement of central lymph nodes</td>
</tr>
<tr>
<td>M</td>
<td>M0 No evidence of organ disease</td>
</tr>
<tr>
<td>M1</td>
<td>Extracutaneous organ disease</td>
</tr>
</tbody>
</table>
Staging of other types of non-MF cutaneous lymphomas

Table 6. Diagnostic workup

<table>
<thead>
<tr>
<th>Disease entity</th>
<th>Laboratory and radiologic workup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphomatoid papulosis</td>
<td>• Screening for concurrent cancer may be warranted in elderly patients or presence of risk factors</td>
</tr>
</tbody>
</table>
| pcALCL | • CBC with diff, blood chemistries and LDH
• PET/CT or CT
• Lymph node biopsy (if clinically or radiologically abnormal)
• Bone marrow biopsy in patients with evidence of extracutaneous disease or multiple tumors |
| Subcutaneous panniculitis-like T-cell lymphoma (SPTCL) | • CBC with diff, blood chemistries and LDH,
• PET/CT or CT
• Lymph node biopsy (if clinically or radiologically abnormal)
• Bone marrow biopsy in patients with evidence of extracutaneous disease, multiple tumors or hematocytrophagic syndrome |
| CD4+ small/medium cell primary cutaneous T-cell lymphoproliferative disorder | • None |
| Aggressive pcCTCL: Extranodal NK/T-cell lymphoma, CD8+ aggressive epidermotropic cytotoxic T-cell lymphoma; gamma-delta T-cell lymphoma, Blastic plasmacytoid dendritic cell neoplasm | • As other aggressive lymphomas |
| Extranodal MZL with cutaneous presentation | • CBC with diff, blood chemistries and LDH
• Borrelia serology |
| pcFCL | • CBC with diff, blood chemistries and LDH
• PET/CT or CT
• Lymph node biopsy (if clinically or radiologically abnormal)
• Bone marrow biopsy |
| pc diffuse large B-cell lymphoma, | • CBC with diff, blood chemistries and LDH
• PET/CT
• Lymph node biopsy (if clinically or radiologically abnormal) |
| Primary cutaneous acral CD8+ lymphoma | None |
Table 7. Treatment of other types of cutaneous lymphomas

<table>
<thead>
<tr>
<th>CTCL Subtype</th>
<th>First line treatment</th>
<th>Second or third line treatment</th>
</tr>
</thead>
</table>
| **Lymphomatoid papulosis**
 - Solitary lesion
 - Large/stigmitizing lesion
 - Multifocal | Observation
 Topical high potency corticosteroids
 Surgical excision
 Local radiotherapy
 Narrow band UVB
 Psoralen UVA light therapy
 Low dose MTX(5-25mg/wk) | Topical carmustine 0.2-0.4%*
 Interferon alpha
 Isotretinoin or Alitretinoin |
| **Primary Cutaneous ALCL**
 - Solitary lesion
 - Multifocal or frequently recurrent
 - Extracutaneous involvement | Surgical excision
 Local radiotherapy (15Gy)
 Low dose MTX (5-25mg/week) maintenance
 CHOP or CEOP | Isotretinoin or Alitretinoin
 Interferon
 Single agent chemotherapy (gemcitabine, etoposide)
 Brentuximab vedotin* |
| **Subcutaneous panniculitis-like T-cell lymphoma**
 - Associated hemophagocytic syndrome | Systemic corticosteroids, alone, or in combination with methotrexate
 CHOP or CEOP x 6 +/- HDT-ASCT in eligible patients | Cyclosporine §
 Vorinostat¶
 Local radiotherapy
 Oral Bexarotene¹ |
| **Primary cutaneous acral CD8+ T-cell lymphoma**
 Provisional entity | Intralesional corticosteroids
 Local radiotherapy | |
| **Primary cutaneous CD4+ small/medium T-cell lymphoproliferative disorder**
 - If tumour rapidly growing or > 5cm, High Ki67 | Observation
 Topical corticosteroids
 Intralesional corticosteroids
 Local radiotherapy | Local radiotherapy |
| **Primary cutaneous aggressive epidermotropic CD8+ cytotoxic T-cell lymphoma**
 Primary cutaneous γδ T-Cell lymphoma | Multiagent chemotherapy (CHOP or CEOP) plus IFRT 30Gy/10 or 45Gy/25 | Vorinostat¶
 HDT/ASCT or Allogeneic stem cell transplantation in eligible candidates |
<p>| Blastic plasmacytoid dendritic cell neoplasm (CD4+/CD56+ hematodermic neoplasm) | Multiagent chemotherapy (CHOP or CEOP) | Single agent chemotherapy (Gemcitabine) |</p>
<table>
<thead>
<tr>
<th>Condition</th>
<th>Treatment</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute lymphoblastic leukemia type protocol if concurrent bone marrow involvement</td>
<td>Local radiotherapy</td>
<td></td>
</tr>
<tr>
<td>Allogeneic stem cell transplantation in first remission for eligible patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary cutaneous extranodal NK/T cell lymphoma, nasal type</td>
<td>Combined Modality (CHOP or CEOP plus IFRT) for localized presentation SMILE or equivalent for advanced stage</td>
<td>HDT-ASCT in eligible patients with relapsed/refractory</td>
</tr>
<tr>
<td>Primary Cutaneous Marginal Zone Lymphoma or Primary Cutaneous Follicle Center Lymphoma</td>
<td>Surgical excision Local radiotherapy (15-35Gy) Observation Chlorambucil Rituximab monotherapy* Antibiotics (cephalosporin or doxycycline)</td>
<td>Intralesional corticosteroids Intralesional rituximab (5-20mg per lesion q4week x 3-6 cycles)* Treat as systemic (R-Bendamustine x 6)</td>
</tr>
<tr>
<td>• Solitary lesion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Multifocal lesions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• B. burgdorferi associated pcMZL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary cutaneous large B cell lymphoma, leg type</td>
<td>R-CHOP x 6 +/- IFRT IFRT +/- rituximab monotherapy* if frail</td>
<td></td>
</tr>
<tr>
<td>• Short term director’s privilege (STDP) required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§ Short term exceptional drug therapy (STEDT) approval required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☉ Health Canada Special Access Program required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>¶ Not covered by AHS Cancer Control Drug Benefit list. Manufacturer’s reimbursement assistance program available. Dispensed through retail pharmacy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>★ Manufacturer application required for access. Drug not funded.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Special topics in CTCL

The role of transplantation in cutaneous lymphoma:

Existing studies of allogeneic stem cell transplantation in mycosis fungoides or sezyry syndrome are limited to small, retrospective reports or case series. Autologous stem cell transplantation has not been associated with durable remissions and therefore has been largely abandoned for MF/SS. The following recommendations are based on best available outcome data and established consensus guidelines:

- Patients with MF/SS should be risk-stratified using the CTCL International Consortium prognosis score. Patients with high-risk disease (3 or 4 of age>60, elevated LDH, stage IV or LCT) should be considered for allogeneic transplantation as part of second line of therapy.
- Patients with advanced stage 3 or stage 4 MF/SS who progress after more than two lines of systemic therapy should be considered for allogenic transplantation.
- Selected patients with stage 2 MF/SS or with large cell transformation may be considered for allogeneic BMT.
- Patients must meet other eligibility criteria for transplant prior to being considered. Issues such as chemosensitivity (CR or PR to last line of therapy), adequate performance status (ECOG 0-2) and preserved organ function apply.
- TSEB before transplant may be considered prior to transplantation for improved skin control.
- Transplantation in other rare and aggressive CTCL such as CD8+ epidermotropic aggressive T cell lymphoma or primary cutaneous gamma-delta T cell lymphoma is at this time a largely experimental approach.
- Relapses still occur after allogeneic transplants and may be treated adjustment of immunosuppression, DLI infusion, or further skin-directed treatments. Distinguishing CTCL from transplant associated GVHD requires multidisciplinary expertise.

Large Cell Transformation in Mycosis Fungoides:

The pathologic definition of large cell transformation in mycosis fungoides (LCT-MF) is the presence of large cells (>= 4 times the size of a small lymphocyte) in 25% of more of the dermal infiltrate or forming microscopic nodules. The cells are often CD30+ by IHC however CD30- variants are also described. It is difficult to discriminate from other subtypes of cutaneous lymphoma, including cutaneous anaplastic large cell lymphoma (cALCL) or lymphomatoid papulosis (LyP), which may also coexist with mycosis fungoides.

The prognosis of LyP and cALCL is considerably more favourable than LCT-MF. Historical estimates for long-term survival with LCT-MF is less than 20%, and most series report a median survival of 2-36
months. However, a subset of patients with limited LCT-MF may follow a more indolent course. One large EORTC cohort analysis reported a median survival of 8.3 years for patients with LCT, and the authors concluded LCT is significant for disease progression but not survival outcome26.

Currently, there is a lack of prospective research to guide a standardized approach for management of LCT-MF. Most patients are treated with combination chemotherapy however it remains it is unclear which patients benefit from this approach.

Several clinical and pathological characteristics in LCT-MF have been associated with poor prognosis28,31, including advanced age (> 60 years), elevated LDH at transformation, advanced stage (III/IV), extra-cutaneous transformation, the presence of follicular mucinosis, folliculotropism, and CD30-negativity. Additional pathologic variables have been described but may not be routinely analyzable so have been omitted from these recommendations.

We recommend to consider intensive chemotherapeutic strategies (monotherapy or combination in suitable fit candidates) in patients with any of the following clinical or pathologic variables associated with high risk LCT-MF. In the absence of these, we recommend treatment as per MF guidelines (see Table I).

Clinical variables for high risk LCT-MF:

- advanced age (> 60 years)
- elevated LDH at transformation
- generalized tumours (versus solitary or regional)
- advanced stage (III/IV)
- extra-cutaneous transformation

Adverse Pathologic variables in LCT

- absent papillary dermal involvement (assessment may be limited by provided tissues)
- folliculotropism
- follicular mucinosis
- absence of fibrosis
- CD30 expression in less than 50% of neoplastic cells

Brentuximab vedotin has activity in LCT-MF. A phase 2 study of brentuximab in a heavily pre-treated CD30+ MF/SS population, the majority of whom had LCT (30/32, 90%) showed a significant response rate of 70\%35. A subsequent prospective, randomized controlled trial of brentuximab vedotin versus physician’s choice (MTX or bexarotene) in CD30+ CTCL demonstrated a significant improvement in objective global response lasting at least 4 months with brentuximab (56.3\% versus 12.5\%)39. The study included both previously treatment CD30+ MF and CD30+ ALCL. Although the histologic characteristics of the CD30+ MF patients were unreported, a proportion may have had transformed MF, as this was not an exclusion criteria. Brentuximab vedotin is indicated for previously treated
CD30+ MF, and could be tried for high risk LCT-MF patients as defined above, who are either unsuitable for chemotherapy or refractory/relapsed following chemotherapy.

References

V. Hodgkin Lymphoma

Pathologic Classification

The histological sub-classification of Hodgkin lymphoma is based on the light microscopic H&E interpretation. If problems with differential diagnosis arise, staining for CD15, CD30, T-cell and B-cell panels and EMA may be helpful. For lymphocyte predominant Hodgkin lymphoma, CD20, CD45, +/- CD57 are recommended.

Table 1. WHO classification of histologic subtypes of Hodgkin lymphoma

<table>
<thead>
<tr>
<th>Classical</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Nodular Sclerosis</td>
</tr>
<tr>
<td>- Mixed Cellularity</td>
</tr>
<tr>
<td>- Lymphocyte Rich</td>
</tr>
<tr>
<td>- Lymphocyte Depleted</td>
</tr>
<tr>
<td>Nodular Lymphocyte Predominant</td>
</tr>
</tbody>
</table>

Staging

Mandatory staging procedures include:

- Pathology review whenever possible (essential for core needle biopsies)
- Complete history and physical examination (B symptoms, Etoh intolerance, pruritis, fatigue, ECOG performance score, examination of nodes, Waldeyer’s ring, spleen, liver, skin)
- CBC & differential, creatinine, electrolytes, Alk P, ALT, LDH, bilirubin, total protein, albumin, calcium
- ESR (required for limited stage patients)
- If a PET/CT is not done, then perform a bone marrow aspiration and biopsy (2cm core preferable) for patients with stage IIB-IV or cytopenias (note: flow cytometry on the marrow aspirate does not add useful information and should not be done)
- Chest x-ray (PA and lateral)
- CT scan of the neck, chest, abdomen, and pelvis
- A PET scan with body CT is preferred as initial staging and after 2 cycles of ABVD
- Pregnancy test, if at risk (consider fertility and/or psychosocial counseling)
- Semen cryopreservation if chemotherapy or pelvic radiotherapy is contemplated
- HIV: if HIV risk factors or unusual disease presentations

Primary Treatment of Classical Hodgkin Lymphoma

General principles: For treatment planning, supradiaphragmatic clinical stage (CS) I or II without bulk (mass >10cm or >1/3 maximal transthoracic diameter (MTD) on CXR) or significant B symptoms is considered limited stage. Initial treatment options for classical Hodgkin Lymphoma involve the
chemotherapy regimens ABVD or escalated BEACOPP as well as involved field radiotherapy (IFRT). Multiple phase III studies conducted by the German Hodgkin Study Group (GHSG) and other cooperative study groups have demonstrated that optimal cure rates are achieved with: 1) ABVD x2 cycles followed by 20Gy IFRT for favorable risk limited stage disease (5yr PFS >90%); 2) ABVD x4 cycles followed by 30Gy IFRT for unfavorable risk limited stage (≥ 3 nodal sites, ESR > 50 or >30 with B symptoms, or extranodal disease) (5yr PFS >85%); 3) escalated BEACOPP x 4-6 cycles for young healthy patients with advanced stage disease; and 4) ABVD x6 cycles for patients >60 years or with co-morbidities. Advanced stage patients also receive IFRT following chemotherapy to localized PET+ residual disease >2.5cm, and is considered for sites of prior bulk after ABVD.

Data supporting escalated BEACOPP for advanced stage disease: The GHSG HD9 trial conducted in the 1990s demonstrated that 8 cycles of an escalated-dose BEACOPP regimen were superior to 8 cycles of a COPP/ABVD regimen or 8 cycles of a baseline-dose BEACOPP regimen in terms of freedom from treatment failure and overall survival rates in patients with advanced-stage Hodgkin lymphoma20. Each regimen was followed by consolidative radiation therapy to sites of initial bulky disease greater than 5 cm. At the 10-year analysis, freedom from treatment failure was 64% for the COPP/ABVD group, 70% for the baseline BEACOPP group, and 82% for the escalated BEACOPP group (p<0.001); overall survival rates were 75%, 80%, and 86%, respectively (p<0.001)21. There were higher rates of hematologic toxicities, grades 3-4 infections and higher rate of AML/MDS in the escalated BEACOPP group, but not an increase in all second malignancies. A meta-analysis of 4 subsequent phase III trials confirmed superior PFS (OR 0.56, 95%CI 0.38, 0.81) and long-term overall survival (OR 0.64, 95%CI 0.51, 0.81) with escBEACOPP compared to ABVD22,23. Of importance, escBEACOPP is associated with infertility, especially in male patients. Sieniawski et al. (2008)24 reported that 34 of 38 patients with advanced-stage Hodgkin lymphoma became azoospermic after treatment with 8 cycles of BEACOPP, and that of the remaining 4 patients, 2 had impaired spermatogenesis.

The German Hodgkin Study Group recently published the results of their HD15 prospective randomized clinical trial25. 2182 patients with newly diagnosed Hodgkin lymphoma aged 18-60 years with stage IIB (large mediastinal mass or extranodal lesions), or stage III-IV disease were randomly assigned to receive either 8 cycles of escalated BEACOPP (8Besc), 6 cycles of escalated BEACOPP (6Besc), or 8 cycles of BEACOPP14 (8B14). After a median follow-up of 48 months, there were 53 deaths (7.5%) in the 8Besc group, 33 (4.6%) in the 6Besc group and 37 (5.2%) in the 8B14 group. The higher number of deaths in the 8Besc group mainly resulted from acute toxicity of chemotherapy and secondary neoplasms. There were 72 secondary cancers including 29 secondary acute myeloid leukemias and myelodysplastic syndromes: 19 (2.7%) in the 8Besc group, 2 (0.3%) in the 6Besc group and 8 (1.1%) in the 8B14 group. Complete response was achieved in 90.1% of patients after 8Besc, 94.2% after 6Besc and 92.4% after 8B14 (p=0.01). Five year OS rates were 91.9% in the 8Besc group, 95.3% in the 6Besc group, and 94.5% in the 8B14 group. PET scans performed after chemotherapy for 822 patients revealed that 739 were in PR with residual mass ≥ 2.5 cm having no other exclusion
criteria. 548 patients were PET-negative (74.2%) and 191 were PET-positive (25.8%). PFS was comparable between patients in CR or those in PET-negative PR after chemotherapy with 4-year PFS rates of 92.6% and 92.1%, respectively. Only 11% of all patients in the HD15 trial received additional radiotherapy as compared to 71% in the prior HD9 study25.

In an attempt to reduce severe toxicities associated with escBEACOPP, an open-label, randomized, parallel-group, phase 3 trial investigated the utility of PET after two cycles of standard escBEACOPP to allow for adaptation of treatment intensity26. The trial included 18-60 year olds with newly diagnosed advanced-stage Hodgkin's lymphoma (N=1945), and assigned patients (1:1) to two parallel treatment groups on the basis of their PET results after cycle 2 of escBEACOPP (PET-2). Patients with positive PET-2 were randomised to receive six additional cycles of either standard escBEACOPP (8 × escBEACOPP in total) or escBEACOPP with rituximab (8 × R-eBEACOPP) (rituximab abandoned mid-trial due to lack of efficacy). Patients with negative PET-2 were randomised between standard treatment with 4-6 additional cycles of escBEACOPP (6-8 × escBEACOPP… the trial switched from total 8 to total 6 escBEACOPP in the standard arm after the results of HD15) or experimental treatment with two additional cycles only (4 × escBEACOPP). Patients with negative PET-2 randomly assigned to either 6-8 × escBEACOPP (n=504) or 4 × escBEACOPP (n=501) had 5-year progression-free survival of 90.8% (95% CI 87.9-93.7) and 92.2% (89.4-95.0), respectively (difference 1.4%, 95% CI -2.7 to 5.4). 4 × escBEACOPP was associated with fewer severe infections (8% vs 15%) and organ toxicities (8% vs 18%) as compared to patients receiving 6-8 × escBEACOPP. The trial supports reducing therapy to 4 escBEACOPP in patients who achieve PET-negative disease after 2 cycles of escBEACOPP.

Due to concerns of toxicity, escalated BEACOPP in Alberta should only be considered for the following patients2,21,22,27-31:
- Age < 60 years
- KPS score ≥ 70 (ECOG 0-2)
- HIV negative, no other major co-morbidities
- Patients must be made aware of infertility implications, and consent to proceed

Although the above-described treatment approaches currently optimize cure rates from initial therapy, they result in: 1) the use of radiotherapy that contributes to late mortality from second cancers and cardiac disease; 2) the use of multiple cycles of Bleomycin that may cause serious lung toxicity; or 3) the use of escalated BEACOPP that increases the risk of serious infections and therapy-related MDS/AML. With the use of a PET-guided approach that minimizes therapy for patients whose lymphoma is highly sensitive to ABVD, we anticipate a reduction in toxicity of therapy and a need to only subject less responsive patients to the toxicities of IFRT or escalated BEACOPP.
Data Supporting Brentuximab vedotin for Primary Therapy of Hodgkin Lymphoma

An open-label, multicenter phase 3 trial of 1334 patients with previously untreated stage III/IV Hodgkin lymphoma, randomized (1:1) patients to receive brentuximab vedotin, doxorubicin, vinblastine, and dacarbazine (A+AVD) or ABVD. After a median follow-up of 24.6 months, 2 year modified progression-free survival (primary end point) was 82.1% (95%CI: 78.8-85.0%) for the A+AVD group and 77.2% (95%CI: 73.7-80.4%) in the ABVD group (p=0.04). Neutropenia was higher in the A+AVD group (58% vs 45%), febrile neutropenia occurred in 83 patients (rate: 11% in those receiving prophylactic GCSF and 21% in those without GCSF). Peripheral neuropathy was also higher in the A+AVD group (67% vs. 43%), with resolution at last follow-up in 2/3 of patients. Pulmonary toxicity ≥grade 3 occurred in 1% of A+AVD patients vs. 3% in ABVD. No overall survival difference was observed. While this trial showed an improvement in its primary endpoint (modified PFS), this endpoint included patients who received IFRT after achieving a PR, which many would argue is appropriate curative therapy and should not have qualified as treatment failure. Additionally, Health Canada restricted approval to patients with Stage 4 disease, who are thus, the only patients currently eligible to receive this therapy in Canada. With the current analysis, the number needed to treat is very large (and would be even larger if the patients receiving adjuvant radiotherapy were excluded from the PFS calculation). BV has not been investigated using a PET-directed approach (the current standard for HL in Alberta), has not been proven superior to escBEACOPP (our recommended treatment for young and fit Stage 4 HL patients) and thus the costs of A-AVD are considered too high to justify a change in practice at this time.

We recommend A-AVD only for patients who are appropriate for intensive, curative HL therapy but refuse escBEACOPP for reasons of fertility preservation or personal choice or are ineligible for escBEACOPP due to age or comorbidities (but still suitable for full dose A-AVD).

Data Supporting a PET-Guided Treatment Approach:

Limited Stage:

In the UK Rapid trial, patients with stage I-IIA non-bulky HL received ABVD x3 cycles then underwent a PET scan. If the PET was positive (uptake more than blood pool, Deauville score 3-5) the patients received one more cycle ABVD then IFRT, whereas if the PET was negative patients were randomized to observation or IFRT. The 3yr PFS was 85.9% in the 145 PET+ patients, 94.6% in the PET- patients who received IFRT and 90.8% in PET- patients who were observed. The difference in PFS was -3.8% (95%CI: -8.8%, 1.3%) exceeding -7% non-inferiority margin. Of interest, the per-protocol PFS was 97% vs 90.8% because 26 pts did not get allocated IFRT. The respective 3 year overall survival rates were 97.1% vs 99.0%. In the EORTC/LYSA/FIL H10 trial, stage I-II HL patients were randomized between control arm therapy with ABVD x3 +INRT (favorable risk) or ABVD x4 +INRT (unfavorable risk), with all patients undergoing PET after cycle 2 ABVD. In the experimental
arm of the study, patients received ABVD x2 then a PET scan, followed by ABVD x 2 (favorable) or 4 (unfavorable) if PET-, or escBEACOPP x2 cycles +INRT if PET+. Comparing control (INRT) and experimental (no INRT) arms for patients with negative PET after 2 cycles ABVD, the difference in PFS was -11.9% (95%CI -16.9%, -8.2%) for favorable risk (not meeting non-inferiority endpoint) and -2.5% (95%CI -6.6%, 0.5%) for unfavorable risk (not meeting non-inferiority endpoint). There was no difference in overall survival. For patients with PET+ disease after ABVD, the 5y PFS 77% vs 91% (p=0.002) and 5yr OS 89% vs 96% (p=0.06) favouring escBEACOPP compared to ABVD + INRT.

As neither the RAPID nor H10 trials confirmed non-inferiority of the PET-directed radiotherapy omission approach, this would support the use of radiotherapy despite a negative interim PET. However, given the lack of difference in OS and small differences in PFS, a PET-directed approach is recommended, accepting the risk of reduced local control with potential need for salvage chemotherapy and transplantation at relapse, reconciled by an expected late gain in OS due to avoidance of the long term sequelae of radiotherapy such as secondary malignancy and cardiovascular disease.

Advanced Stage:

The *UK RATHL trial* treated patients with 2 cycles ABVD then performed a PET scan. 172 patients with PET+ disease (uptake > liver, Deauville 4-5) had therapy intensified to escBEACOPP whereas PET- patients were randomized to ABVD x4 (n=470) or AVD x4 (n=465). For PET- patients, 3yr PFS was 85.7% vs 84.4% for ABVD vs AVD (95%CI crossed 5% difference non-inferiority limit), the respective 3yr OS rates were 97.2% vs 97.6%, and the rate of grade 3-4 pneumonitis was 1% vs 0.2%, respectively. Of interest, a prior phase GHSG III trial found that omitting agents from ABVD x2 prior to IFRT for favorable risk limited stage HL resulted in lower 5 PFS rates (5yr FFTF 93.1% ABVD, 89.2% AVD, 77.1% AV, 81.4% ABV) and did not recommend this strategy. In view of the fact that the RATHL trial failed to meet its non-inferiority endpoint and only demonstrated a small reduction is serious pulmonary toxicity by eliminating bleomycin from the final 4 cycles of ABVD, it seems most reasonable to adopt this strategy only for those patients with risks factors for bleomycin lung toxicity (COPD / ↓PFTs, CrCl <80ml/min, Stage IV, Age >40yr), or those with any clinical or PFT evidence of acquiring bleomycin lung toxicity at any time during therapy. Patients with PET2 positive status whose therapy was intensified to 4 additional cycles of BEACOPP (BEACOPP-14 or escBEACOPP) had a 3 yr PFS of 67.5% and 3 yr OS of 87.8%.

The aforementioned HD18 study by German Hodgkin Study Group confirmed that 4 escBEACOPP was as effective as 6-8 escBEACOPP but less toxic in patients who achieved PET-negative status after 2 cycles of escBEACOPP. 3 yr PFS in this group (PET-2 negative after escBEACOPP) was 95.3% and 3 yr OS was 98.8%.
Based upon the above data, it is reasonable to adopt a PET-guided therapy approach for advanced staged Hodgkin lymphoma. Initiation of escBEACOPP as per the HD18 study results in a higher overall survival and is the preferred approach for young, fit patients for whom the fertility implications are acceptable. For patients who initiate therapy with ABVD, PET-directed therapy will minimize the long-term risks of cytotoxic chemotherapy and radiotherapy for PET-patients after ABVD x2, while maintaining PFS rates <5% inferior to conventional combined modality treatments. These PET-guided approaches are illustrated in Figure 1-2. For centres where PET scanning is not available, or in situations when patients prefer to prioritize their initial cure rate and avoidance of intensive salvage therapy with autologous SCT rather than prioritize a similar long-term survival while minimizing therapy-related second cancers, cardiovascular mortality or bleomycin lung toxicity, the more traditional therapy approach illustrated in Figure 3 is still very reasonable.
Figure 1. Treatment algorithm for Limited Stage classic Hodgkin lymphoma using PET-Guided therapy (Preferred Approach)

Limited Stage

Stage I-II

(Consider treating as advanced stage if B symptoms or Bulk)

ABVD x2

\[\downarrow\]

PET/CT

Favourable Risk: ISRT 20Gy or ABVD x2

Unfavourable Risk: ABVD x4

Omit additional Bleomycin if:

- COPD / ↓PFTs
- CrCl <80ml/min
- Age >40 years

Perform pulmonary function test at baseline and after cycles 3 and 5; omit bleomycin if >25% decrease in DLCO or FVC; decrease bleomycin dose by 50% if 10-24% decrease in DLCO or FVC

Unfavourable Risk Factors:

- ESR > 50 (or >30 with B symptoms)
- Mediastinal Mass/Thoracic Ratio >1/3
- ≥3 Nodal Regions*
- Extranodal disease (GHSG definition)
- Age ≥50 years (EORTC definition)

IPS Risk Factors

- Male
- Age ≥45 years
- Stage IV
- Hb <105
- Albumin <40
- Leukocytosis (WBC ≥15)
- Lymphocytopenia <0.6 or <8%WBC

Unfavourable Risk Factors:

- EORTC includes infraclavicular/subpectoral region with axilla, whereas GHSG includes with cervical
- EORTC and GHSG combine mediastinum with bilateral hila as single region

IPS Risk Factors

- Male
- Age ≥45 years
- Stage IV
- Hb <105
- Albumin <40
- Leukocytosis (WBC ≥15)
- Lymphocytopenia <0.6 or <8%WBC
Figure 2. Treatment algorithm for Advanced Stage Hodgkin lymphoma using PET-Guided therapy

Advanced Stage
- Stage III or IV or
- Definite B symptoms or
- Bulky mass > 10 cm or
- >1/3 MTD on CXR

еск BEACOPP x2

- PET/CT
 - **-ve**
 - **еск BEACOPP x2**
 - **+ve**
 - **esc BEACOPP x 4 + IFRT to final PET+**

ABVD x2

- PET/CT
 - **-ve**
 - **Risk for Bleo Lung Toxicity**
 - COPD / ↓PFTs
 - CrCl <80ml/min
 - Stage IV
 - Age >40yr
 - **+ve**
 - eBEACOPP+ x 4 IF age < 60 yrs & fertility discussed (esp if IPS high)
 - IFRT to final PET+

еск BEACOPP should only be considered for the following patients:
- Age < 60 years
- KPS score > 70 (ECOG 0-2)
- HIV negative, no major co-morbidities
- Pts must be made aware of infertility implications, and consent to proceed

www.ahs.ca/guru
Figure 3. Treatment algorithm for Hodgkin lymphoma without using PET-Guided therapy.

Limited Stage
- Stage I-II and No B symptoms and No bulk > 10cm

Stage
- Advanced Stage
 - Stage III-IV or B symptoms or bulk > 10cm mass

Unfavourable Risk
- ESR > 50
- ≥ 3 sites disease or extranodal disease

IPS Risk Score
- Age ≥ 45 years
- Stage IV
- Male
- Albumin < 40

1. No
 - ABVD x 2 then IFRT 20Gy

2. Yes
 - ABVD x 4 then IFRT 30Gy
 - If PET positive residual mass > 2.5cm then IFRT to prior bulk > 10cm (if PET positive residual mass > 2.5 cm)

Recurrent Hodgkin Lymphoma
- Initial relapse: GDP or DICEP
 - high dose therapy and autologous SCT ± IFRT 20-30Gy to prior bulk site at relapse

Second or Subsequent Relapse
- PD-1 (pembrolizumab or nivolumab) inhibitors for relapse post-ASCT or ASCT-ineligible
- Brentuximab vedotin if not refractory to prior BV consolidation
- IFRT localized relapse in previously non-irradiated site
- Palliative chemotherapy (COPP, ChLVPP, PEPC, GDP, vinblastine, gemcitabine, lomustine)
- Autologous SCT only in motivated healthy patients < 60 years with chemosensitive disease

escBEACOPP should only be considered for the following patients:
- Age < 60 years
- KPS score ≥ 70 (ECOG 0-2)
- HIV negative, no major comorbidities
- Pts must be made aware of infertility implications, and consent to proceed

Consider A-AVD
- Stage IV
- Eligible for 100% ABVD
- Refusal of escBEACOPP (ex fertility preservation)

Last Reviewed: January 2022

www.ahs.ca/guru
Future potential option for patients not eligible for PET-guided approach

Brentuximab vedotin36:

An open-label, multicenter phase 3 trial of 1334 patients with previously untreated stage III/IV Hodgkin lymphoma, randomized (1:1) patients to receive brentuximab vedotin, doxorubicin, vinblastine, and dacarbazine (A+AVD) or ABVD. After a median follow-up of 24.6 months, 2 year modified progression-free survival (primary end point) was 82.1% (95%CI: 78.8-85.0%) for the A+AVD group and 77.2% (95%CI: 73.7-80.4%) in the ABVD group (p=0.04). Neutropenia was higher in the A+AVD group (58% vs 45%), febrile neutropenia occurred in 83 patients (rate: 11% in those receiving prophylactic GCSF and 21% in those without GCSF). Peripheral neuropathy was also higher in the A+AVD group (67% vs. 43%), with resolution at last follow-up in 2/3 of patients. Pulmonary toxicity ≥grade 3 occurred in 1% of A+AVD patients vs. 3% in ABVD. No overall survival difference was observed. While this trial showed an improvement in its primary endpoint (modified PFS), this endpoint included patients who received IFRT after achieving a PR, which many would argue is appropriate curative therapy and should not have qualified as treatment failure. With the current analysis, the number needed to treat is very large (and would be even larger if the patients receiving adjuvant radiotherapy were excluded from the PFS calculation) and thus the costs of A-AVD are considered too high to justify a change in practice at this time. However, this regimen has been demonstrated as an effective and tolerable frontline therapy for advanced stage Hodgkin lymphoma and could become the standard against which future non-PET directed treatments are compared.

Management of Recurrent Hodgkin Lymphoma2,37-52:

Similar to the initial workup, recurrent disease should involve re-staging tests.

\textit{Initial relapse.}

- Re-induction chemotherapy with GDP or DICEP then high dose therapy and autologous SCT ± IFRT 20-30Gy to prior bulk site at relapse, or PET-positive residual disease post-ASCT
- Brentuximab vedotin consolidation post-ASCT for patients with primary refractory HL, relapse within 12 months or extranodal disease at relapse
- Pembrolizumab iv q3-6 weeks for older/unfit patients who are deemed ineligible for ASCT

\textit{Second or subsequent relapse.}

- IFRT if localized relapse in previously non-irradiated site
- A PD1-inhibitor (eg. Nivolumab or Pembrolizumab) after prior failure of chemotherapy (and autologous SCT in transplant eligible patients) [data suggests longer remissions with PD1-inhibitor compared to Brentuximab vedotin making PD1i then BV the preferred sequencing]
- Brentuximab vedotin IV q21d for up to 16 doses if prior failure of initial chemotherapy (ABVD or BEACOPP) and prior autologous SCT (excluding patients who progress on BV consolidation post-ASCT)
- Palliative chemotherapy for symptomatic patients (GDP, COPP, ChlVPP, CEPP, vinblastine)
- Allogeneic SCT only in motivated healthy patients <60 years old with chemosensitive disease, ECOG 0-2, and time to relapse of >1 year following high dose therapy and autologous SCT
Brentuximab vedotin (BV)

A phase II study of N=102 patients treated with BV (1.8mg/kg, outpatient IV, 30min, every 3 weeks for up to 16 cycles) for relapsed/refractory Hodgkin lymphoma after failed hematopoietic autologous stem cell transplantation reported outcomes after approximately 3-years of follow-up. Median OS and PFS were estimated at 40.5 months and 9.3 months, respectively. The estimated 3-year OS and PFS rates were 73% (95%CI: 57-88%) and 58% (95%CI: 41-76%), respectively. Younger age, good performance status, and lower disease burden at baseline were favorable prognostic factors for OS. The most common treatment-related adverse events were peripheral sensory neuropathy, nausea, fatigue, neutropenia, and diarrhea. Chen et al. reported 5-year end-of-study data. For the entire cohort, OS was 41% (95% CI: 31-51) and PFS was 22% (95% CI: 13-31). Complete response (evaluated via Revised Response Criteria for Malignant Lymphoma): was observed in 34 patients. For those who achieved CR, OS and PFS rates were 64% (95% CI: 48-80%) and 52% (95% CI: 34-69%), respectively (median OS and PFS not yet reached). At the time of study close, 13 CR patients remained in remission (4 received consolidative hematopoietic allogeneic stem cell transplant; 9 received no further anticancer treatment). Of those patients who experienced BV associated peripheral neuropathy, 88% experienced either resolution (73%) or improvement (14%) in symptoms.

Consolidation with Brentuximab Vedoatin after ASCT

The AETHERA clinical trial evaluated a strategy of consolidation with brentuximab vedotin after autologous stem cell transplantation in high risk relapsed Hodgkin lymphoma patients. Patients were eligible for BV if they were either: refractory to frontline treatment, relapsed < 12months after frontline therapy, or relapsed >= 12 months with extranodal involvement. Patients were randomized to receive either BV (1.8mg/kg every 3 weeks for up to 16 cycles) or placebo. 5 year PFS was 59% for BV versus 41% for placebo. Grade 3-4 peripheral motor and sensory neuropathy was observed in 6 and 10% of patients receiving BV consolidation, however, improves or resolves in the majority of patients.

PD1-inhibitors:

The open-label phase III Keynote-204 study compared pembrolizumab (n=151) versus brentuximab in relapsed or refractory classic Hodgkin lymphoma, with the dual primary end points of PFS and OS. The interim analysis did not include OS data, however, with a median follow-up after randomization of 25.7 months, median PFS was 13.2 months (95%CI: 10.9-19-4) for pembrolizumab versus 8.3 months (95%CI: 5.7-8.8) for brentuximab vedotin (HR: 0.65; 95%CI: 0.48-0.88; p=0.003). Serious treatment-related AEs occurred in 16% of pembrolizumab patients and 11% of brentuximab vedotin patients. Grade 3-5 treatment-related adverse events were: pneumonitis 4% in the pembrolizumab group vs 1% in the brentuximab vedotin group, neutropenia 2% vs 7%, decreased neutrophil count 1% vs 5%, and peripheral neuropathy 1% vs 3%, respectively. The study included patients who had relapsed after ASCT and patients who were ASCT-ineligible making PD1 inhibition the preferred secondline therapy.
for non-transplant eligible patients and the preferred third line therapy for patients who relapse post-ASCT.

CheckMate 205, a single-arm, multicenter, phase 2 study enrolled patients with relapsed/refractory Hodgkin lymphoma who failed autologous hematopoietic cell transplantation to receive nivolumab (3 mg/kg every 2 weeks until disease progression/unacceptable toxicity). After a median follow-up of 18 months, 40% of patients were still on treatment. Objective response rates were 65-73% dependent on cohort, (overall 69%). The median duration of response was 16.6 months (95%CI: 13.2-20.3m), and median PFS was 14.7 months (95%CI: 11.3-18.5m). Most common grade 3-4 AEs included lipase increases (5%), neutropenia (3%), and ALT increases (3%).

Nodular Lymphocyte Predominant Hodgkin Lymphoma

This rare subtype comprises ~5% of Hodgkin lymphomas and has a very indolent course with excellent survival. Despite the name, clinical, biological, morphological and immunophenotypic features of NLPHL significantly differ from classical Hodgkin lymphoma. Patients most commonly present with early stage disease, the clinical course is indolent and the prognosis is very favourable. Similar to other indolent CD20+ lymphoma, late relapses as well as transformation to DLBCL (3–5% of cases) can occur. Even after relapse, patients may survive for many years, and therefore minimizing risk of treatment-related mortality is important.

In terms of treatment recommendations, surgery should be offered to patients with localized, resectable disease and a watchful waiting approach may be considered in patients who have no residual disease after surgery (following discussion with a radiation oncologist). Patients with residual but localized peripheral NLPHL (stage 1-2A with ≤2 sites of disease) should be offered IFRT. Patients with more advanced stage 2A disease, or those with stage 3-4 disease, should be treated in a similar fashion as those with other forms of indolent CD20+ lymphoma including watchful waiting or chemoimmunotherapy (eg. BR or RCVP) as appropriate. Consider the possibility of high-grade transformation in patients with rapidly progressive disease, marked B symptoms, focal abnormalities in the spleen, extranodal disease, high LDH, or prior bone marrow involvement. R-CHOP is appropriate for patients with transformed disease, with consideration for HDCT/ASCT, especially in those who have relapsed < 2 years after prior chemoimmunotherapy. Consider rituximab monotherapy in patients with advanced stage NLPHL who have serious co-morbidities that would preclude the use of combination chemotherapy.
References

VI. HDCT and Hematopoietic Stem Cell Transplantation for Lymphoma

For detailed information on hematopoietic stem cell transplantation in patients with hematological malignancies, please refer to the Alberta Bone Marrow and Blood Cell Transplant Standard Practice Manual. This manual was developed and is regularly updated by members of the Alberta Provincial Hematology Tumour Team and the Alberta Bone Marrow and Blood Cell Transplant Program, and can be found at: http://www.albertahealthservices.ca/assets/info/hp/cancer/if-hp-cancer-guide-bmt-manual.pdf

Summary of Recommendations

Eligibility:
- Patient: age < 70 years, ECOG 0-2, adequate organ function, no active infections
 - HIV not contraindication if CD4>100 and meet other eligibility criteria
- Lymphoma: chemosensitive: partial response (PR) or better to last chemotherapy
 - No active secondary CNS disease (eligible if CNS in PR/CR to salvage therapy)

HDCT regimen for autologous stem cell transplantation:
- Indolent (Follicular, SLL/CLL, MZL, LPL) and Mantle Cell: melphalan 180mg/m² + TBI 5Gy
- Aggressive systemic non-Hodgkin lymphoma (DLBCL, PTCL): (R)BEAM or Etoposide/Melphalan
- Hodgkin lymphoma: melphalan 200mg/m² or Etoposide/Melphalan
- Primary CNS lymphoma: thiotepa 600mg/m² + busulfan 9.6mg/kg
- Secondary CNS lymphoma: (R-TBM) thiotepa 500mg/m² + busulfan 9.6mg/kg + melphalan 100mg/m²

HDCT regimen for allogeneic stem cell transplantation:
- Majority of patients: fludarabine 250mg/m² + busulfan 12.8mg/kg, 400cGy TBI + ATG
- Reduced intensity: fludarabine 120mg/m² + melphalan 140mg/m² + ATG
 - co-morbidities (liver, lung, nervous system), prior busulfan, prior ASCT after BEAM or TBI
 - slowly progressive, non-bulky lymphoma

Indications for HDCT and autologous stem cell transplantation:
1. Indolent non-Hodgkin lymphoma
 - Follicular, Marginal Zone, Small Lymphocytic, Lymphoplasmacytic Lymphoma
 - chemosensitive first or second chemotherapy failure
 - Mantle Cell Lymphoma (especially low or low-intermediate risk MIPI score)
 - first partial remission (PR) or first complete remission (CR)
2. Aggressive non-Hodgkin lymphoma
 - Part of first salvage therapy for chemosensitive first relapse or first remission-induction failure
 - Part of initial therapy for high IPI=4-5 risk patients or double hit Lymphoma
3. Hodgkin lymphoma
 - First chemotherapy failure (relapse or 1\(^0\) refractory)

Indications for HDCT and allogeneic stem cell transplantation for lymphoma:

1. Indolent non-Hodgkin lymphoma
 - Follicular, Marginal Zone, Small Lymphocytic/CLL, Lymphoplasmacytic Lymphoma
 - Chemosensitive second to fourth chemotherapy failure (last time to progression <2 years), usually after prior autologous SCT.
 - Mantle cell lymphoma
 - First remission for high risk MIPI score, blastoid variant, or heavy blood/marrow involvement
 - Chemosensitive first chemotherapy failure

2. Aggressive non-Hodgkin lymphoma
 - Diffuse large B-cell or peripheral T-cell lymphomas
 - Chemosensitive relapse following HDCT/ASCT if time to relapse >1 year and aPI=0-1
 - Lymphoblastic lymphoma
 - First remission after induction and CNS therapy if prior blood/marrow involvement and high LDH
 - Chemosensitive first chemotherapy failure

3. Hodgkin lymphoma
 - Chemosensitive relapse following HDCT/ASCT if time to relapse >1 year

4. Any lymphoma with indication for HDCT/ASCT but unable to collect adequate autograft
References

VII. Supportive Care in the Treatment of Lymphoma

Allopurinol

300mg/d x10-14 days starting 1-3 days prior to cycle 1 chemotherapy for Burkitt or Lymphoblastic lymphoma. This should also be considered for rapidly progressive aggressive bulky lymphomas and in patients with impaired renal function.

Pre-Phase Therapy for DLBCL Patients >60 years of Age

Prednisone 100mg/d x 3-7 days prior to cycle 1 R-CHOP or R-CEOP.

Neutropenia Prevention1-5

Primary or secondary prophylaxis to decrease the risk of febrile neutropenia and maintain chemotherapy dose intensity is indicated when treating with curative intent (e.g. preventing treatment delay/dose reduction). The recommendation for R-CHOP, CODOX-M/IVAC, HyperCVAD, or intensive salvage therapy regimens, with or without rituximab (e.g. DHAP, ICE, GDP, MICE, DICEP), in patients with aggressive Hodgkin or non-Hodgkin lymphoma older than 60 years of age, or poor prognostic factors (high IPI or IPS) is G-CSF 300μg subcutaneous on days 8 and 12 of a 14- or 21-day chemotherapy regimen1.

For primary prophylaxis of febrile neutropenic infection for similar indications above or co-morbidities that increase risk of infectious complications such as chronic obstructive pulmonary disease, or secondary prevention after a prior episode of febrile neutropenia:
- G-CSF 300 or 480μg/day starting 3 days after chemotherapy completed until post-nadir ANC>1.0 (usually 7-10 days) (though most patients require only 2-5 days of G-CSF support)
- Must monitor CBC
- The alternative is one dose of pegfilgrastim (Neulasta) 6mg on day 4 (without CBC monitoring, but at a cost of ~$2500/dose)

Erythropoeitin

Erythropoeitin is not recommended because of evidence suggesting increased mortality rates. Consider only for symptomatic anemia patients who cannot receive RBC transfusions (i.e., Jehovah’s Witnesses, prior severe transfusion reactions or severe iron overload).

Antimicrobial Prophylaxis for Immunosuppressive Regimens6-8

- For patients receiving fludarabine, high dose cyclophosphamide, >5 days high dose corticosteroids every 21 days, bortezomib, and bendamustine, and for immune-compromised patients (i.e., HIV,
post-organ transplant or autoimmune disease patients who develop hematologic cancers) use prophylaxis during and for 12 months post-treatment. CD4 count monitoring can be used to help determine if prophylaxis can be stopped earlier (should not be assessed until 3 or 6 months post-treatment). Patients with CD4 count > 200 / µL may have earlier discontinuation of antimicrobial prophylaxis.

- **Pneumocystis jiroveci** pneumonia (PCP) prophylaxis:
 - choice 1: Septra 1 regular strength tab daily
 - choice 2: dapsone 100mg every Monday/Wednesday/Friday (or 50 mg daily)
 - choice 3: pentamadine 300mg inhalation monthly
 - choice 4: atovaquone 1500 mg daily

- Shingles prophylaxis: valacyclovir 500mg daily

Immunizations

Patients should be encouraged to keep all immunizations up to date. The reactivation and/or seroreversion of viruses that patients have been previously vaccinated against, such as hepatitis B, is a major cause of morbidity and mortality in patients with hematologic malignancies treated with cytotoxic chemotherapy. Appendix G outlines the general principles and specific immunization schedules for recipients of blood and marrow transplantations. In addition, separate guidelines outlining influenza and pneumococcal immunization recommendations for all patients with cancer can be found at: www.albertahealthservices.ca/cancerguidelines.asp under the “Supportive Care” heading.

Recombinant adjuvant herpes zoster vaccine is commercially available however cancer patients were excluded in the pivotal phase 3 trials (ZOE-50 and ZOE-70). Studies with use in cancer patients are not yet published, but results suggest that vaccination responses are better for patients not on treatment or given prior to chemotherapy, as opposed to during chemotherapy. Other hematological malignancy patients had better vaccines responses than Non Hodgkin’s Lymphoma and CLL patients for reasons not yet identified. The AHS Hematology group consensus is that the recombinant adjuvant herpes zoster vaccine is not contraindicated in hematology patients. Patients may receive the vaccine if they have adequate immune function to amount a response, and are 6-9 months post-Rituximab due to the reduced vaccine responses seen in rituximab-treated patients.

Family members and health care providers in contact with patients who have undergone a transplant should also be strongly encouraged to keep all immunizations up to date.

For patients who have experienced reactivation or seroreversion of hepatitis B virus, prompt administration of nucleoside/nucleotide analogues is essential. Entacavir or tenofovir following R-CVP or R-CHOP chemotherapy for lymphoma is recommended for all patients who have a positive hepatitis B surface antigen test.
References

VIII. Follow-Up Care in the Treatment of Lymphoma

The following late effects should be considered when patients are reviewed during follow-up:

- **Relapse.** Careful attention should be directed to lymph node sites, especially if previously involved with disease. Routine surveillance CT scans are not indicated. Most relapses have been demonstrated to occur between scheduled clinics visits and tests, and are detected by patients themselves. Highly anxious patients who wish surveillance tests could be considered for occasional CXR and abdominal/pelvic ultrasounds (if thin), especially in the setting of indolent lymphoma and prior retroperitoneal and mesenteric disease.

- **Dental caries.** Neck or oropharyngeal irradiation may cause decreased salivation. Patients should have careful dental care follow-up and should make their dentist aware of the previous irradiation.

- **Hypothyroidism.** After external beam thyroid irradiation to doses sufficient to cure malignant lymphoma, at least 50% of patients will eventually develop hypothyroidism. All patients whose TSH level becomes elevated should be treated with life-long T4 replacement in doses sufficient to suppress TSH levels to low normal.

- **Infertility.** Multi-agent chemotherapy and direct or scatter radiation to gonadal tissue may cause infertility, amenorrhea, or premature menopause. However, with current chemotherapy regimens and radiation fields used, most patients will not develop these problems. All patients should be advised that they may or may not be fertile after treatment. In general, women who continue menstruating are fertile, but men require semen analysis to provide a specific answer.

- **Secondary neoplasms.** Although quite uncommon, certain neoplasms occur with increased frequency in patients who have been treated for lymphoma. These include AML, thyroid, breast, lung, and upper GI carcinoma, melanoma and cervical carcinoma *in situ*. It is appropriate to screen for these neoplasms by careful history, physical examination, mammography and Pap smears for the rest of the patient’s life because they may have a lengthy induction period. Patients should be counseled about the hazards of smoking and excessive sun exposure, and should be encouraged to perform careful breast and skin examinations on a regular basis.

Table 1 outlines the minimum follow-up tests and examinations that should be performed on all patients after treatment for malignant lymphoma. Visits should be scheduled with an oncologist or family physician educated in post-treatment lymphoma surveillance every 3-4 months for 2 years, then every 6 months for 3 years, then annually.
Table 1. Minimum follow-up tests and examinations for patients with malignant lymphoma

<table>
<thead>
<tr>
<th>Interval</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every Visit</td>
<td>- Examination of lymph nodes, thyroid, lungs, abdomen, and skin</td>
</tr>
<tr>
<td></td>
<td>- CBC & differential, LDH (consider ESR AlkP for Hodgkin disease)</td>
</tr>
<tr>
<td></td>
<td>- Consider CXR during first 3 years for patients who previously had intrathoracic disease</td>
</tr>
<tr>
<td>Annually</td>
<td>- TSH (if thyroid was irradiated)</td>
</tr>
<tr>
<td></td>
<td>- Mammogram for women after age 40 if irradiated (otherwise age 50)</td>
</tr>
<tr>
<td></td>
<td>- Pap smear</td>
</tr>
<tr>
<td></td>
<td>- Influenza immunization</td>
</tr>
<tr>
<td>Routine Body CT Scanning</td>
<td>- After 3 months of therapy and if abnormal, again after completion of all therapy</td>
</tr>
<tr>
<td></td>
<td>- If a residual mass is seen on the CT after completion of all therapy, then consider PET/CT scan or consider a repeat CT scan 6 months later. Otherwise, no further routine CT scans are required.</td>
</tr>
</tbody>
</table>
References

Appendix A. Information regarding Rituximab 375mg/m² IV or 1400mg SC for B-cell lymphoma treatment

• Indications:
 o All CD 20+ B cell lymphomas (indolent and aggressive)
 o PTLD and MCL
 o Monotherapy or with chemo
 o Maintenance q2m (MCL) and q3m (indolent and FL)
 o Stem cell mobilization and high dose conditioning regimens for ASCT.

Not indicated:
 o Not CLL (Health Canada)
 o not for Ritux treatment of autoimmune cytopenias due to CLL or indolent lymphoma (hematoma risk)

• Timing of sc Rituximab relative to IV:
 o all first exposure to rituximab must be IV
 o before commencing SC the patient must have completed a full rituximab IV infusion dose, regardless if the patient had an infusion reaction or the grade of the reaction. (patient does not have to had 0 reaction to IV). If the patient did not complete* the full IV dose, the next rituximab dose must be by IV infusion. (Roche)

• Pts may start with SC if:
 o going on to maintenance treatment and had SC prior
 o going on to mobilization, high dose chemo and had SC prior
 o undergoing re-treatment (even > 6 months) may start with SC if they had SC prior

I. Initial Therapy For Diffuse Large B-Cell Lymphoma

R-CHOP (standard risk):
• Rituximab 375mg/m² IV day 1 (premedications: Tylenol, Benadryl, Zantac, hydrocortisone 100mg), then Rituximab 1400mg sc on day 1 from cycle 2 onwards if initial IV dose tolerated well.
• Cyclophosphamide 750 mg/m² IV
• Adriamycin 50 mg/m² IV day 1
• Vincristine 2mg IV day 1
• Prednisone 100mg/day p.o. days 1-5
• Cycles: every 21 days

R-CHOEP (high risk, age <60 years)¹-³:
• Rituximab 375mg/m² IV day 1 (premedications: Tylenol, Benadryl, Zantac, hydrocortisone 100mg) then Rituximab 1400mg sc on day 1 from cycle 2 onwards if initial IV dose tolerated well.
• Cyclophosphamide 750 mg/m² IV
- Adriamycin 50 mg/m² IV day 1
- Vincristine 2mg IV day 1
- Etoposide 100mg/m² IV days 1-3 (or 200mg/m² p.o. days 2-3 instead of IV; round down to nearest 50mg multiple)
- Prednisone 100mg/day p.o. days 1-5
- G-CSF days 7-11 or neulasta day 4 of each cycle
- Cycles: every 14-21 days

R-CEOP (cardiac disease with LVEF <50%)¹⁻³:
- Rituximab 375mg/m² IV day 1 (premedications: Tylenol, Benadryl, Zantac, hydrocortisone 100mg) then Rituximab 1400mg sc on day 1 from cycle 2 onwards if initial IV dose tolerated well.
- Cyclophosphamide 750 mg/m² IV
- Vincristine 2mg IV day 1
- Etoposide 50mg/m² IV days 1-3 (or 100mg/m² p.o. days 2-3 instead of IV; round up to nearest 50mg multiple)
- Prednisone 100mg/day p.o. days 1-5
- Cycles: every 21 days

R-MACOP-B (not recommended unless patient needs to complete therapy in 3 months):
- Methotrexate 400mg/m² IV on weeks 2, 6, 10 (24 hours later: folinic acid 15mg q6 hours x 6 doses)
- Adriamycin 50 mg/m² IV weeks 1,3,5,7,9,11
- Cyclophosphamide 350 mg/m² IV weeks 1,3,5,7,9,11
- Vincristine 2mg IV weeks 2,4,6,8,10,12
- Bleomycin 10mg/m² weeks 4,8,12
- Prednisone 75mg/day p.o. daily, taper over last 15 days
- Septra for PCP prophylaxis
- Suggest adding rituximab 375mg/m² IV q14 days x 6 doses then Rituximab 1400mg sc on day 1 from cycle 2 onwards if initial IV dose tolerated well.

DA-EPOCH-R:
Prednisone is a tablet taken by mouth TWICE daily on Days 1, 2, 3, 4, 5 Rituximab is an intravenous (I.V.) infusion on Day 1 (time of infusion varies) Doxorubicin is an I.V. infusion given over 24 hours on Days 1, 2, 3, 4 Etoposide is an I.V. infusion given over 24 hours on Days 1, 2, 3, 4 Vincristine is an I.V. infusion given over 24 hours on Days 1, 2, 3, 4 Cyclophosphamide is an I.V. infusion given over two hours on Day 5 On Day 6, filgrastim (Neupogen®) is started subcutaneously once daily and continued every day until the white blood cell count returns to normal. Alternatively, some Doctors prefer to give one dose of pegfilgrastim (Neulasta®) after each cycle of dose-adjusted EPOCH-R Patients then have labs drawn twice weekly until the white blood cell count has recovered. Typically, etoposide, doxorubicin, and vincristine are mixed together in one intravenous infusion bag and each bag is infused over 24 hours on Days 1, 2, 3, and 4 of each cycle (96 hours total).
Day 1-4
- **Doxorubicin**
 - **10 mg/m²/day**
- **Vincristine**
 - **0.4 mg/m²/day (no cap)**

 Intravenous infusion in an elastomeric infusor in sodium chloride 0.9% via a central line over 96 hours

Day 1-4
- **Etoposide**
 - **50 mg/m²/day**

 Intravenous infusion in 500 ml sodium chloride 0.9% over 24 hours via a central line

Day 5
- **Ondansetron**
 - **8 mg**

 Oral as a single dose prior to chemotherapy

Day 6
- **Cyclophosphamide**
 - **750 mg/m²**

 Intravenous bolus

Day 6
- **GCSF (Biosimilar)**
 - **300 micrograms**

 Subcutaneous injection once daily until neutrophil recovery (supply 7 doses)

Dose Adjustments according to nadir:

Doxorubicin, Etoposide and Cyclophosphamide ONLY.

Doses may be adjusted from Cycle 2 based on the previous cycle’s neutrophil (ANC) nadir. This is monitored by obtaining TWICE WEEKLY CBC, i.e. days 9, 12, 15, 18:

- If nadir ANC $\geq 0.5 \times 10^9/l$: **increase by 1 dose level**
- If nadir ANC $< 0.5 \times 10^9/l$ on 1 or 2 measurements: **same dose as last**

Cycle.

- If nadir ANC $< 0.5 \times 10^9/l$ on at least 3 measurements: **decrease by 1 dose level**
- If platelet nadir $< 25 \times 10^9/l$: **reduce by 1 dose level** regardless of ANC
- Life threatening infections: **decrease by 1 dose level**

Drug Dose Adjustments

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Drug Doses per Dose Levels</th>
<th>Cycle 1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-2 (64% x 0.8)</td>
<td>-1 (80% x 0.8)</td>
<td>(100% x 0.8)</td>
<td>(starting dose)</td>
</tr>
<tr>
<td>Prednisolone (mg/m² twice daily)</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Rituximab (mg/m²/day)</td>
<td>375</td>
<td>375</td>
<td>375</td>
<td>375</td>
</tr>
<tr>
<td>Doxorubicin (mg/m²/day)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Vincristine (mg/m²/day)</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Etoposide (mg/m²/day)</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Cyclophosphamide (mg/m²/day)</td>
<td>480</td>
<td>600</td>
<td>750</td>
<td>900</td>
</tr>
</tbody>
</table>

Neurotoxicity:

If the patient complains of significant constipation or sensory loss in fingers and/or toes, consider dose reduction of vincristine:

- Reduce by 25% for grade 2 motor neuropathy

Last Reviewed: July 2021

www.ahs.ca/guru
Reduce by 50% for grade 3 motor or sensory neuropathy

For patients who develop ≥ grade 3 ileus, treatment should be delayed until recovery and vincristine introduced at 75% of the normal dose thereafter. If ≥ grade 3 ileus recurs, vincristine should be discontinued.

Additional medicines that may be prescribed:

<table>
<thead>
<tr>
<th>Medicine</th>
<th>Dose</th>
<th>Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Septra</td>
<td>480mg</td>
<td>Oral once daily</td>
</tr>
<tr>
<td>Valacyclovir</td>
<td>500mg</td>
<td>Oral once daily</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>50mg</td>
<td>Oral once daily</td>
</tr>
<tr>
<td>Omeprazole</td>
<td>20mg</td>
<td>Oral once daily for 5 days</td>
</tr>
<tr>
<td>Metoclopramide</td>
<td>10mg</td>
<td>Oral four times daily as needed</td>
</tr>
<tr>
<td>Ondansetron</td>
<td>8mg</td>
<td>Oral as a single dose prior to chemotherapy, then twice daily as needed</td>
</tr>
</tbody>
</table>

Docusate/Senna (Senna-S®) to prevent constipation from vincristine

Consider intrathecal prophylaxis for patients with >1 extranodal site and elevated LDH

II. Initial Therapy For Indolent Histology Non-Hodgkin Lymphoma

B-R:
- Bendamustine 90 mg/m² IV day 1, 2
- Rituximab 375 mg/m² IV day 1 then Rituximab 1400mg sc on day 1 from cycle 2 onwards if initial IV dose tolerated.
- Cycles: repeated every 3-4 weeks depending on blood counts (usually administered every 28 days) for a maximum of 6 cycles

CVP:
- Cyclophosphamide 800 mg/m² IV day 1 (or 400 mg/m²/day p.o. days 1-5)
- Vincristine 2mg IV day 1
- Prednisone 100mg/day p.o. days 1-5
- Cycles: every 21 days

R-CVP:
- Rituximab 375mg/m² IV day 1 (premeds: Tylenol, Benadryl, Zantac, hydrocortisone 100mg), then Rituximab 1400mg sc on day 1 from cycle 2 onwards if initial IV dose tolerated.
- Cyclophosphamide 750 mg/m² IV day 1
- Vincristine 2mg IV day 1
- Prednisone 100mg/day p.o. days 1-5
- Cycles: every 21 days
Maintenance Rituximab in First or Second Remission Following Chemotherapy + Rituximab:

- Follicular and other indolent B-cell lymphoma: rituximab 1400mg sc (or 375mg/m² IV if cannot tolerate sc) x 1 dose q3 months x 2 years (8 doses total)
- Mantle cell lymphoma option: rituximab 1400mg sc (or 375mg/m² IV if cannot tolerate sc) q2months until progression

Outpatient R-DHAP:

Cycle 1.
Day 1: Rituximab 375mg/m² IV (if no rituximab in past 3months and cannot receive sc rituximab)
Day 2: 500mL NS pre, cisplatin 35 mg/m² in 500 mL NS/mannitol, 500 mL NS post, AraC 2g/m² in 500 mL NS.
Day 3: 500mL NS pre, cisplatin 35 mg/m² in 500 mL NS/mannitol, AraC 2g/m² in 500 mL NS. Total 5 hrs

Cycle 2 onwards.
Day 1: Rituximab 1400mg sc, 500mL NS pre, cisplatin 35 mg/m² in 500 mL NS/mannitol, 500 mL NS post. Then AraC 2g/m² in 500 mL NS. Total 5 hrs
Day 2: 500mL NS pre, cisplatin 35 mg/m² in 500 mL NS/mannitol, AraC 2g/m² in 500 mL NS. Total 5 hrs

Chlorambucil (options):
- 0.1-0.2 mg/kg/day for 4-8 weeks then usually reduce for maintenance
- 10-14 mg/m² for 5 to 7 days each 28 days
- 0.5 mg/kg days 1 and 15 q28d cycle

Fludarabine:
- 25mg/m² IV days 1-5 q28 days (days 1-3 only if frail elderly or renal dysfunction)
- 40mg/m² p.o. days 1-5 q28 days (round down to nearest multiple of 10mg) (d1-3 only if frail or renal dysfunction)

FND:
- Fludarabine 25mg/m² IV days 1-3 or 40mg/m² p.o. days 1-3
- Mitoxantrone 10mg/m² day 1
- Dexamethasone 40mg p.o. days 1-3
- Septra for PCP prophylaxis
- Cycles: every 28 days
III. Initial Therapy for Peripheral T-Cell Lymphoma

CHOP:
- Cyclophosphamide 750 mg/m² IV
- Adriamycin 50 mg/m² IV day 1
- Vincristine 2mg IV day 1
- Prednisone 100mg/day p.o. days 1-5
- Cycles: every 21 days

CHOEP¹⁻³:
- Cyclophosphamide 750 mg/m² IV
- Adriamycin 50 mg/m² IV day 1
- Vincristine 2mg IV day 1
- Etoposide 100mg/m² IV days 1-3 (or 200mg/m² p.o. days 2-3 instead of IV; round down to nearest 50mg multiple)
- Prednisone 100mg/day p.o. days 1-5
- G-CSF days 7-11 or neulasta day 4 of each cycle
- Cycles: every 21 days

VIPD (Nasal NK/T-cell lymphoma):
- Etoposide 100mg/m² days 1-3
- Ifosfamide 1.2g/m² days 1-3
- Cisplatin 33mg/m² days 1-3
- Dexamethasone 40mg days 1-4
- Cycles: 3 cycles after initial radiotherapy

GOLD (14 day cycle)⁴:
- Gemcitabine 1000mg/m² on day 1
- Oxaliplatin 100mg/m² on day 1
- L-asparaginase 10,000U/m² on days 1-5
- Dexamethasone (20mg b.i.d.) on days 1-4
*An intradermal test was required prior to the administration of L-ASP

SMILE (28 day cycle)⁵:
- Methotrexate 2g/m² on day 1
- Leucovorin 15mg x 4 on day 2, 3, and 4
- Ifosfamide 1500mg/m² on day 2, 3, and 4
- Mesna 300 mg/m² x 3 on day 2, 3 and 4
- Dexamethasone 40mg/d on day 2, 3 and 4
- Etoposide 100mg/m² on day 2, 3 and 4
- L-asparaginase 6000U/m² on day 8, 10, 12, 14, 16, 18 and 20
GCSF should be given from day 6 and discontinued if the leukocyte count exceeds 5000/μL.
Antibiotic prophylaxis with sulfamethoxazole-trimethoprim is recommended.

IV. Hodgkin Disease Chemotherapy Regimens

Initial Therapy:

ABVD
- adriamycin 25 mg/m² IV days 1 and 14
- bleomycin 10 mg/m² IV days 1 and 14
- vinblastine 6 mg/m² IV days 1 and 14
- dacarbazine 375 mg/m² IV days 1 and 14
Cycles: every 28 days

BEACOPP (escalated)
- bleomycin 10mg/m² IV day 8
- etoposide 200mg/m² IV days 1-3
- adriamycin 35mg/m² IV day 1
- cyclophosphamide 1250mg/m² IV day 1
- vincristine 1.4mg/m² IV day 8
- procarbazine 100mg/m² p.o. days 1-7
- prednisone 40mg/m² p.o. days 1-14
- G-CSF 300-480µg sc d9-19 (to ANC>1.5) or Neulasta d9
Cycles: every 21 days

BEACOPP (baseline)
- bleomycin 10mg/m² IV day 8
- etoposide 100 mg/m² IV days 1-3
- adriamycin 25mg/m² IV day 1
- cyclophosphamide 650mg/m² IV day 1
- vincristine 1.4mg/m² IV day 8
- procarbazine 100mg/m² p.o. days 1-7
- prednisone 40 mg/m² p.o. days 1-14

ChlVPP
- chlorambucil 6mg/m² p.o. days 1-14
- vinblastine 6mg/m² IV days 1 and 8
- procarbazine 100mg/m² p.o. days 1-14
- prednisone 40mg/m² p.o. days 1-14
Cycles: every 28 days

MOPP
- nitrogen mustard 6mg/m² days 1 & 8
- vincristine 1.4mg/m² IV days 1 & 8
- procarbazine 100mg/m² po days 1-14
- prednisone 40mg/m² po days 1-14
Cycles: every 28 days

COPP
- cyclophosphamide 650mg/m² IV days 1&8
- vincristine 1.4mg/m² IV days 1 & 8
- procarbazine 100mg/m² po days 1-14
- prednisone 40mg/m² po days 1-14
Cycles: every 28 days

V. Lymphoma Salvage Regimens

Aggressive Histology Hodgkin and Non-Hodgkin Lymphomas*:

DICE.
- Dexamethasone 10mg IV q6 hours days 1-4
- Ifosfamide 1g/m² (max 1.75g) over 15 minutes days 1-4
- Cisplatin 25mg/m² IV over 1hour days 1-4
- Etoposide 100mg/m² over 1 hour days 1-4
- Mesna 200 mg/m² over 5-10 min prior to first dose of ifosfamide, then 200 mg/m² IV at 4 hours and 400mg/m² p.o. (or 200 mg/m² IV) at 8 hours post-ifosfamide x 4 days
- *Cycles: every 21-28 days*
CEPP.
- Cyclophosphamide 600 mg/m² IV days 1 and 8
- Etoposide 70mg/m² days 1-3
- Procarbazine 60mg/m² p.o. days 1-10
- Prednisone 100mg/day p.o. days 1-10
- Cycles: every 28 days

GDP.
- Gemcitabine 1000mg/m² IV days 1 and 8
- Dexamethasone 40mg p.o. days 1-4
- Cisplatin 75mg/m² IV

DICEP.
- Dexamethasone 10mg IV q8 hours x 10 doses
- Cyclophosphamide 1.75 g/m² IV over 2 hours days 1-3
- Etoposide 350mg/m² IV over 2 hours days 1-3
- Cisplatin 35mg/m² IV over 2 hours days 1-3
- Mesna 1.75g/m² IV over 24 hours days 1-3
- Septra for PCP prophylaxis
- Cycles: Once only

Add rituximab to salvage regimens for transplant eligible patients with relapsed B-cell lymphomas

Indolent Histology Non-Hodgkin Lymphoma:

As above, plus:

Rituximab.
- 375mg/m² IV days 1,8,15, and 22 (Rituximab 1400mg sc from day 8 onwards if initial IV dose tolerated).
- Pre-medicate with hydrocortisone 100mg IV, Benadryl, Zantac, and Tylenol
- Infuse 50mg/hour initially, then increase by 50mg/hour increments q30 minutes as tolerated to a maximum of 400mg/hour
- Subsequent infusions can begin at 100mg/hour and increase by 100mg/hour increments as tolerated to maximum of 400mg/hour

FND.
- Fludarabine 25mg/m² IV days 1-3 or 40mg/m² p.o. days 1-3
- Mitoxantrone 10mg/m² day 1
- Dexamethasone 40mg p.o. days 1-3
- Septra for PCP prophylaxis
- *Cycles:* every 28 days

R-FCM.
- Fludarabine 25mg/m2 IV days 1-3 or 40mg/m2 p.o. days 1-3
- Cyclophosphamide 200mg/m2 IV days 1-3
- Mitoxantrone 8mg/m2 IV day 1
- Rituximab 375mg/m2 IV day 1 (Rituximab 1400mg sc on day 1 from cycle 2 onwards if initial IV dose tolerated).
- *Cycles:* every 28 days

VI. Burkitt Lymphoma6,7

Modified Magrath Regimen of R-CODOXM/R-IVAC (Blood 2014; 124:2913-2920)8:

Regimen A (R-CODOX-M)

<table>
<thead>
<tr>
<th>Medicine</th>
<th>Days:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>rituximab 1400mg sc</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>cyclophosphamide 800mg/m2 IV</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>doxorubicin 50mg/m2 IV</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>vincristine 1.5mg/m2 IV cap 2mg</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>allopurinol 300mg/day po</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>methotrexate 3000mg/m2 IV over 2 hour IV**</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>leucovorin 25mg IV @ 24 hours, then 25mg IV q6h until methotrexate<10$^{-8}$ M</td>
<td></td>
<td>xx</td>
</tr>
<tr>
<td>IT methotrexate 12mg</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>IT cytarabine 50mg *</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Peg-filgrastim 6mg</td>
<td></td>
</tr>
</tbody>
</table>

*If CNS disease, give extra IT AraC 50mg d5 cycle 1 only

Regimen B (R-IVAC)

<table>
<thead>
<tr>
<th>Medicine</th>
<th>Days:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>rituximab 375mg/m2 IV</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>cytarabine 2g/m2 IV q12h x 4 doses</td>
<td>X</td>
<td>xx</td>
<td></td>
</tr>
<tr>
<td>ifosfamide 1500mg/m2 IV</td>
<td>X</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>mesna 360mg/m2 IV q3 hours</td>
<td>xx</td>
</tr>
<tr>
<td>etoposide 60mg/m2 IV</td>
<td>X</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>IT methotrexate 12mg</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Peg-filgrastim 6mg</td>
<td></td>
</tr>
</tbody>
</table>

*If CNS disease, give extra IT AraC 50mg d3 cycle 1 only
Low risk patients:
- Single extra-abdominal mass <10cm, or completely resected abdominal disease and normal LDH
- Modified regimen A x 3 cycles (cytarabine IT day 1 and methotrexate IT day 3 each cycle)

High risk patients:
- All others
- Alternate regimen A with regimen B for a total of 2 each or 4 cycles total

Start next cycle once ANC>1.0 and platelets>50

VII. Primary CNS Lymphoma Protocol

A. Transplant Protocol for Transplant-Eligible for Patients: age < 75 years, no significant co-morbidities. All chemotherapy doses based on ideal body weight.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>*Step 2</th>
<th>**Step 3</th>
<th>Step 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Rituximab 375mg/m² II d0, then 1400mg sc d4 & 14</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>high-dose methotrexate 3.5 g/m² d1&15</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>procarbazine 100 mg/m² d1-7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rituximab 1400mg sc d1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cytarabine 3 g/m² x d1&2</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>G-CSF 5-10 µg/kg d8-13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apheresis ~d14 or 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rituximab 1400mg sc d0</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>high-dose methotrexate 3.5 g/m² d1</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cytarabine 2 g/m² twice daily days 2-3 all q21d for 2 cycles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thiotepa 300 mg/m² IV days 6-8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>busulfan 3.2 mg/kg IV days 4 to 2, ASCT day 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Step 2 may begin either week 4 or 5 depending upon patient status and apheresis scheduling
**Step 3 may be omitted in patients who have achieved some response and are physically fit to proceed directly to ASCT on week 9.

Step 1. Induction: High-dose methotrexate/procarbazine q14 days x 2 cycles

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADMISSION 0</td>
<td>Hydrocortisone 100mg IV, Benadryl 50mg IV, Zantac 50mg IV, Tylenol 650mg. 0900hr-Rituximab 375mg/m² (1st infusion protocol) 2000hr ~IV lactated ringers @ 2 mL/kg/hour continue until methotrexate level <0.05. 2200hr - sodium bicarbonate 1500 mg PO q6h continue until methotrexate level less than 0.05 µmol/L if urine pH <7, increase sodium bicarbonate to 6500 mg PO q4h</td>
<td>Daily weights & Diet & Diff, EP, Creat, glucose ALT,ALP,LDH,bilirubin,Alb, Ca, Mg LFTs, Ca, lipase, every Monday & Thursday</td>
</tr>
<tr>
<td>1</td>
<td>0800hr - Kytril 1mg IV 0800hr - methotrexate 3500mg/m² IV over 2 hour days 1 and 15 0800hr - procarbazine 100mg/m² po daily x 7 days 1-7 only (round down to nearest 50mg multiple) sodium bicarbonate 50 mmol IVPB q8h PRN if urine pH less than 7 continue until methotrexate level less than 0.05 µmol/L transfer 50 mL sodium bicarbonate injection (1 mmol/mL) into empty viaflex bag for administration. Give over one hour.</td>
<td>0700hr - Urine pH twice daily, call MD if <7.0</td>
</tr>
<tr>
<td>2-3</td>
<td>0800hr - folinic acid (leucovorin) 25 mg IV q6 hours until methotrexate level <0.05 Continue hydration until methotrexate level <0.05</td>
<td>0500-0800hr – methotrexate Level daily (expect level <10 d2, <1 d3, <0.1 d4, <0.05 d5)</td>
</tr>
<tr>
<td>4</td>
<td>0900hr- Rituximab 1400mg sc on cycle 1 only and continue folinic acid</td>
<td>0500-0800hr – methotrexate Level daily</td>
</tr>
</tbody>
</table>

* Male IBW = 50kg + 2.3kg x inches > 5ft, Female IBW = 45.5 kg + 2.3kg x inches> 5ft. Adjusted BW = IBW + [40% x (actual – IBW)]

Last Reviewed: July 2021
Step 2. Rituximab/high-dose cytarabine x 1 cycle for stem cell collection after 2 cycles of methotrexate

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
</tr>
</thead>
</table>
| 1 | 0900hr - Premeds: Loratadine 10mg po, Tylenol 650mg p.o.
Rituximab 1400mg sc |
| 2 & 3 | 0800hr – Ondansetron or Granisetron, dexamethasone 10-12mg IV/po
1000hr – Cytarabine 3g/m² IV over 3 hours daily if creat cl >60ml/min
or 2g/m² daily if creat cl 46-60ml/min
or 1.5g/m² daily if creat cl 31-45ml/min |

Other Orders
- Weight
- CBC & Diff, EP, creatinine, glucose
- ALT, AlkP, LDH, bilirubin, Alb, Ca, Mg

NB: Step 3 may be omitted in patients who have achieved some response and are physically fit to proceed directly to ASCT on week 9.

Step 3. High-dose methotrexate/cytarabine consolidation q21 days x 1 cycles after stem cell collection

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
</tr>
</thead>
</table>
| ADMISSION 0 | 16:00hr- Premeds: Loratadine 10mg po, Tylenol 650mg p.o.
Rituximab 1400mg sc
2000hr – IV lactated ringers @ 2 mL/kg/hour until methotrexate level <0.05
2200hr - sodium bicarbonate 1500 mg PO q6h
if urine pH <7, increase sodium bicarbonate to 6500 mg PO q4h |

Other Orders
- Daily weights
- Daily CBC & differential, EP, creatinine, glucose
- ALT, AlkP, LDH, bilirubin, Alb, Ca, Mg
- ALT, Alk P, bili, Ca, lipase, every Monday & Thursday

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
</tr>
</thead>
</table>
| 1 | 0800hr - Kytril 1mg IV
0800hr - methotrexate 3500mg/m² IV over 2 hours
sodium bicarbonate 50 mmol IVPB q8h PRN if urine pH less than 7
continue until methotrexate level less than 0.05 μmol/L
transfer 50 mL sodium bicarbonate injection (1 mmol/mL) into empty ivflex bag for administration. Give over one hour. |

Other Orders
- 07:00 - Urine pH bid, call MD if <7.0

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
</tr>
</thead>
</table>
| 2-3 | 0800hr - folinic acid (leucovorin) 25 mg IV q6h hours until methotrexate level < 0.05
-Continue hydration until methotrexate level <0.05
0800hr – Granisetron 2mg IV, dexamethasone 10mg IV
1000hr – Cytarabine 2g/m² IV over 2 hours bid x2 days if CreatCl>60ml/min
(reduce to 1.3g/m² if creat cl 46-60ml/min or 1g/m² if creat cl 31-45ml/min) |

Other Orders
- 0500-08:00 – methotrexate level daily
(expect <10 d2, <1 d3, <0.1 d4, <0.05 d5)
1% Prednisolone eye drops, 2 tid x 12 doses begin before first dose of cytarabine and continue until 48 hours after the last dose

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
</tr>
</thead>
</table>
| 5 | Discharge once methotrexate level <0.05
If level 0.01-0.05, discharge on leucovorin 5mg p.o. q6 hours x 2-3 days (other meds as step 1 above) |

Other Orders
- Daily CBC & differential starting day 10

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
</tr>
</thead>
</table>
| 8-12 | 1000hr – G-CSF 480-600 µg subcutaneous daily until post-nadir ANC > 1.5
Daily weights |

Other Orders
- Daily CBC & differential, EP, creatinine, glucose
- ALT, AlkP, LDH, bilirubin, Alb, Ca, Mg
- ALT, Alk P, bili, Ca, lipase, every Monday & Thursday

Step 4. *TBU/ASCT consolidation after response to methotrexate and high-dose cytarabine

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
</tr>
</thead>
</table>
| ADMISSION Day -7 | Allopurinol 300 mg p.o. daily until day 0
2200hr - N/S @ 100 mL/hour until day -4, then infuse only during busulfan administration days -4 to -2. |

Other Orders
- Consult dietitian, physiotherapy
- Low bacteria diet
- 24 hour intake
- Mouth protocol
- Record intake and output
- Valacyclovir 500mg/d

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
</tr>
</thead>
</table>
| -6 & -5 | 0800 – thiotepa 300 mg/m² IV over 3 hours x 2 days (IDEAL BSA)
Reduce to 270mg/m² if age 61-65years
Reduce to 240mg/m² if age 66-70years
Reduce to 210mg/m² if age >70years |

Other Orders
- 0800hr – granisetron 2 mg IV daily x 8 days
EP daily x 31days
Shower/bath q6 hours x 3 days; avoid skin creams

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
</tr>
</thead>
</table>
| -4 to -2 | 0900 - busulfan 3.2 mg/kg IV daily x 3 days (ideal weight)
Reduce to 2.9mg/kg if age 61-65years
Reduce to 2.55mg/kg if age 66-70years
Reduce to 2.25mg/kg if age >70years |

Other Orders
- Lorazepam 1mg qid prophylaxis x 4 days
CBC & differential daily x 31 days
ALT, Alk Phos, bili, alb, Ca, Mg, every Monday & Thursday
PT, PT, every Monday

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>Rest day</td>
</tr>
</tbody>
</table>

Other Orders
- mycostatin 500,000 units q2-4 hours

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Autologous Blood Stem Cell INFUSION</td>
</tr>
</tbody>
</table>

Other Orders
- septran 1 tab p.o. daily

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
</tr>
</thead>
<tbody>
<tr>
<td>+7</td>
<td>G-CSF 300µg (if less than 70kg) or 480µg (if over 70kg) subcutaneous daily until post-nadir ANC > 1.5</td>
</tr>
</tbody>
</table>

Other Orders
- G-CSF 480-600 µg subcutaneous daily until apheresis completed (plan for apheresis approximately day 13-15, once ANC>5, Ptt>75 and CD34>20)

NB: Step 3 may be omitted in patients who have achieved some response and are physically fit to proceed directly to ASCT on week 9.

* Male IBW = 50kg + 2.3kg x inches > 5ft. Female IBW = 45.5 kg + 2.3kg x inches > 5ft. Adjusted BW = IBW + [40% x (actual – IBW)]

* Last Reviewed: July 2021 **www.ahs.ca/guru**
B. MATRIX Non-Transplant Protocol for Transplant-Eligible for Patients who refuse transplant:
age < 70 years, no significant co-morbidities, ECOG=0-2.
All chemotherapy doses based on ideal body weight.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Week</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rituximab d0, 4 high-dose methotrexate 3.5 g/m² d1 cytarabine 2g/ m² q12h x 2 d2 Thiotepa 30mg/ m² d4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 1. Induction: MATRIX x 4 cycles

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
</table>
| ADMISSION 0 | 0900hr-Rituximab 375mg/m² (1st infusion protocol) 2000hr – IV D5W + 20meq KCL/L + 2 amps NaHCO3/L @ 200ml/hour x 5 days | • Daily weights
• Daily CBC & differential, EP, creatinine, glucose
• ALT,AlkP,LDH,bilirubin,Alb,Ca,Mg
• LFTs, Ca, lipase, every Monday & Thursday |
| 1 | 0800hr - Kytril 1mg IV 0800hr - methotrexate 3500mg/m² IV over 3 hours | 0700hr - Urine pH twice daily, call MD if <7.0 |
| 2-3 | 0800hr - folinic acid (leucovorin) 25 mg IV q6hr until MTX level < 0.05
Continue hydration until methotrexate level <0.05
1000hr –Cytarabine 2mg/m² by 1 hour infusion q12 hr x 2
if CreatCl>60ml/min
(reduce to 1.3g/m² if creat cl 46-60ml/min or 1g/m² if creat cl 31-45ml/min) | 0500-0800hr – methotrexate level daily
(expect level < 10 d2, <1 d3) |
| 4 | 0900hr- Rituximab 1400mg subcutaneously 1000hr- Thiotepa 30mg/m² by 30min infusion | 0500-0800hr – methotrexate Level daily |
| 5 | • Discharge once methotrexate level <0.05
• If level 0.01-0.05, discharge on leucovorin 5mg p.o. q6 hours x 2-3 days
• Discharge meds: septrna DS 1 daily or dapsone 50mg daily x 6-9 months; consider dexamethasone taper if on dexamethasone
• Remember coumadin/LMWH and dilantin if patient is on these medications |

Methotrexate should be omitted if creat clearance < 50 mL/min or if renal dysfunction with prior cycle
Cytarabine should be reduced to q24hr if creat clearance < 50 mL/min or complications of myelosuppression

* Male IBW = 50kg + 2.3kg x inches > 5ft, Female IBW = 45.5 kg + 2.3kg x inches> 5ft. Adjusted BW = IBW + [40% x (actual – IBW)]

* Male IBW = 50kg + 2.3kg x inches > 5ft, Female IBW = 45.5 kg + 2.3kg x inches> 5ft. Adjusted BW = IBW + [40% x (actual – IBW)]
C. Transplant-Ineligible Patients: age ≥75 years, or significant co-morbidities, or patient refuses HDMTX.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week</td>
<td>1</td>
</tr>
<tr>
<td>Rituximab 375mg/m² day 0</td>
<td>x</td>
</tr>
<tr>
<td>Cytarabine 3g/m² daily days 1&2 if creat cl >60ml/min or 2g/m² days 1&2 if creat cl 46-60ml/min or 1.5g/m² days 1&2 if creat cl 31-45ml/min</td>
<td>x</td>
</tr>
<tr>
<td>Thiotepa 30mg/m² on day 2</td>
<td>x</td>
</tr>
<tr>
<td>Rituximab 1400mg sc day 1</td>
<td>x</td>
</tr>
<tr>
<td>Cytarabine 3g/m² daily days 1&2 if creat cl >60ml/min or 2g/m² days 1&2 if creat cl 46-60ml/min or 1.5g/m² days 1&2 if creat cl 31-45ml/min</td>
<td>x</td>
</tr>
<tr>
<td>Thiotepa 30mg/m² on day 2</td>
<td>x</td>
</tr>
</tbody>
</table>

Step 1. Induction: Rituximab high-dose cytarabine/thiotepa x 1 cycle

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 or 1</td>
<td>0900hr-Hydrocortisone 100mg IV, Benadryl 50mg IV, Zantac 50mg IV, Tylenol 650mg, 0900hr-Rituximab 375mg/m² (1st infusion protocol)</td>
<td>• Weekly CBC & differential, EP, creatinine, glucose ALT, AlkP, LDH, bilirubin, Alb, Ca, Mg</td>
</tr>
<tr>
<td>1</td>
<td>NS 1000ml IV hydration
Granisetron 2mg po, dexamethasone 10mg IV
Cytarabine 3g/m² daily on days 1&2 if creat cl >60ml/min or 2g/m² daily on days 1&2 if creat cl 46-60ml/min or 1.5g/m² daily on days 1&2 if creat cl 31-45ml/min
Thiotepa 30mg/m² on day 2</td>
<td>1% Prednisolone eye drops, 2 tid x12 doses begin before first dose of cytarabine and continue until 48 hours after the last dose</td>
</tr>
<tr>
<td>2</td>
<td>NS 1000ml IV hydration
Granisetron 2mg po, dexamethasone 10mg IV
Cytarabine 3g/m² daily on days 1&2 if creat cl >60ml/min or 2g/m² daily on days 1&2 if creat cl 46-60ml/min or 1.5g/m² daily on days 1&2 if creat cl 31-45ml/min
Thiotepa 30mg/m² on day 2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Valtrex 500mg po daily and Septra 1 tab daily x8mo</td>
<td></td>
</tr>
<tr>
<td>8-12</td>
<td>G-CSF 300 or 480µg sc daily x5d (or pegfilgrastim 6mg on day 4)</td>
<td></td>
</tr>
</tbody>
</table>

Step 2. Rituximab High-dose Cytarabine/Thiotepa q21days x 3 cycles

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rituximab 1400mg sc
NS 1000ml IV hydration
Granisetron 2mg po, dexamethasone 10mg IV
Cytarabine 3g/m² daily on days 1&2 if creat cl >60ml/min or 2g/m² daily on days 1&2 if creat cl 46-60ml/min or 1.5g/m² daily on days 1&2 if creat cl 31-45ml/min</td>
<td>• Weekly CBC & differential, EP, creatinine, glucose ALT, AlkP, LDH, bilirubin, Alb, Ca, Mg</td>
</tr>
<tr>
<td>2</td>
<td>NS 1000ml IV hydration
Granisetron 2mg po, dexamethasone 10mg IV
Cytarabine 3g/m² daily on days 1&2 if creat cl >60ml/min or 2g/m² daily on days 1&2 if creat cl 46-60ml/min or 1.5g/m² daily on days 1&2 if creat cl 31-45ml/min
Thiotepa 30mg/m² on day 2</td>
<td>1% Prednisolone eye drops, 2 tid x12 doses begin before first dose of cytarabine and continue until 48 hours after the last dose</td>
</tr>
<tr>
<td>8-12</td>
<td>G-CSF 300 or 480µg sc daily x5d (or pegfilgrastim 6mg on day 4)</td>
<td></td>
</tr>
</tbody>
</table>

*If creat cl <30ml/min do not give cytarabine.

Calculated creatinine clearance= N” x (140-Age) x weight (kg)/serum create in umol/L where “N = 1.23 males or 1.04 females
VIII. Secondary CNS Lymphoma Protocol

A) Transplant-eligible patients (age <65 years, no significant co-morbidities, no immune suppression) with isolated CNS relapse/progression following complete response of systemic lymphoma to RCHOP.

<table>
<thead>
<tr>
<th>Week</th>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>high-dose methotrexate 3.5 g/m² d1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rituximab 375 mg/m² d2</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>procarbazine 100 mg/m² x 7 days d1-7</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vincristine 1.4 mg/m² d1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>rituximab 1400mg sc days 1,4</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dexamethasone 20 mg days 1-4</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cisplatin 35 mg/m² days 1,2</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cytarabine 2 g/m² x1 dose, days 1,2</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G-CSF 5-10 µg/kg day 8-13</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apheresis day 13 or 14</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R-TBuM/ ASCT (ritux d-7 + thiotepa 250mg/m² d -6,-5</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>busulfan 3.2 mg/kg day -4 to -2</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>melphalan 100 mg/m² d-1, ASCT d 0</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

* Male IBW = 50kg + 2.3kg x inches > 5ft, Female IBW = 45.5 kg + 2.3kg x inches> 5ft.

Step 1. Induction: high-dose methotrexate/vincristine/procarbazine q14 days x 4 cycles

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ADMISSION</td>
<td></td>
</tr>
</tbody>
</table>
| | 2000hr - IV D5W + 20meq KCL/L + 2 amps NaHCO3/L @ 200mL/hour x 5 days | • Daily weights
 • Daily CBC & differential, EP, creatinine, glucose
 • ALT,AlkP,LDH,bilirubin,Alb,Ca,Mg
 • LFTs, Ca, lipase, every Monday & Thursday |
| 1 | 0800hr - Kytril 1mg IV | 0700hr - Urine pH twice daily, call MD if <7.0 |
| | 0800hr - methotrexate 3500mg/m² IV over 2 hours cycles 1-4 | |
| | 0800hr - procarbazine 100mg/m² p.o. daily x 7days cycles 1 and 3 | |
| | (round down to nearest 50mg multiple) | |
| | 1000hr - vincristine 1.4mg/m² IV only cycles 1 and 2 | |
| 2-4 | 0800hr- folinic acid (leucovorin) 25 mg IV q6 hours until methotrexate level < 0.05 | 0500-0800hr – methotrexate level daily (expect level < 10 today) |
| | Continue hydration until methotrexate level <0.05 | |
| | 1000hr – Rituximab 375mg/m² IV (first 3 cycles HDMTX) | |
| 5 | • Discharge once methotrexate level <0.05
 • If level 0.01-0.05, discharge on leucovorin 5mg p.o. q6 hours x 2-3 days
 • Discharge meds: septra DS 1 daily or dapsone 50mg daily x 6-9 months; consider dexamethasone taper if on dexamethasone
 • Remember coumadin/LMWH and dilantin if patient is on these medications | |

Step 2. Rituximab/DHAP x 1 cycle for stem cell collection after 4 cycles of methotrexate

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
</table>
| 1 | 0800hr - hydrocortisone 100mg IV, Benadryl, Zantac, Tylenol | • Weight
 • CBC & differential, EP, creatinine, glucose |
| | 0900hr - Rituximab 1400mg sc | |
| | 0900hr - IV 1L NS | |
Step 2. Rituximab/DHAP x 1 cycle for stem cell collection after 4 cycles of methotrexate

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>0900hr – dexamethasone 20mg p.o./IV daily x 4 days 0900hr – Kytril 1mg IV or 2mg p.o. x 3-4 days 0900hr – aprepitent protocol p.o. x 3 days 1000hr – cisplatin 35mg/m² IV over 2 hours with mannitol 25g and 500mL NS 1200hr- cytarabine 2g/m² IV over 2 hours x 1 doses (1.5g/m² if >60yr)</td>
<td>• ALT,AlkP,LDH,bilirubin,Alb,Ca,Mg</td>
<td></td>
</tr>
<tr>
<td>2 0800hr – dexamethasone Kytril, Aprepitent continued 1000hr – cisplatin 35mg/m² IV over 2 hours with mannitol 25g and 500mL NS 1200hr- cytarabine 2g/m² IV over 2 hours x 1 doses (1.5g/m² if >60yr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Rituximab 1400mg sc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-13 1000hr – G-CSF 480-600μg subcutaneous daily until apheresis completed (plan for apheresis approximately day 13-15, once ANC>5, Plt >75 and CD34>20)</td>
<td>Daily CBC & differential starting day 10</td>
<td></td>
</tr>
</tbody>
</table>
Step 3. R-TBuM/ASCT consolidation after response to MTX and RDHAP Induction

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADMISSION Day -7</td>
<td>Allopurinol 300 mg p.o. daily until day 0 Premeds: Hydrocortisone 100mg IV, Benadryl 50mg IV, Zantac 50mg IV, Tylenol 650mg p.o. *-rituximab 375mg/m² IV (first dose long infusion protocol) 2200hr - D5½ N/S + 20 mEq KCL/L @ 125 mL/hour until day -1</td>
<td>• Consult dietician, physiotherapy • Low bacteria diet. 24hour intake • Mouth protocol; record intake and output</td>
</tr>
<tr>
<td>-6 & -5</td>
<td>0800hr – thiotepa 250 mg/m² IV over 2 hours x 2 days (use ideal BSA)</td>
<td>0800hr – Granisetron 2 mg IV daily x 8 days EP daily x 31days Shower/Bath q6 hours x 3 days; avoid skin creams</td>
</tr>
<tr>
<td>-4 to -2</td>
<td>0900 - busulfan 3.2 mg/kg IV daily x 3 days (use ideal weight)</td>
<td>lorazepam prophylaxis x 4 days CBC & differential daily x 31 days ALT, Alk Phos, bilirubin, alb, Ca, Mg, every Monday & Thursday PT, PTT every Monday</td>
</tr>
<tr>
<td>-1</td>
<td>10:00 - melphalan 100mg/m² (actual BSA) IV over 5 minutes 10:15 – Lasix 20mg IV 10:30 - mannitol 20% 250 mL IVPB over 1 hour 11:30 - IV 1L NS @ 500 mL/hour for 3 hours 14:30 -IV 1L NS with 40 mEq KCL/L @ 125 mL/hour x 18 hours</td>
<td>Mycostatin 500,000 units q2-4 hours Septra RS 1 tab p.o. daily Acyclovir 5 mg/kg twice daily IV or 400 mg p.o. four times daily</td>
</tr>
<tr>
<td>0</td>
<td>Autologous Blood Stem Cell INFUSION</td>
<td></td>
</tr>
<tr>
<td>+7</td>
<td>G-CSF 300 µg (if less than 70kg) or 480µg (if over 70kg) subcutaneous daily until post-nadir ANC > 1.5</td>
<td></td>
</tr>
</tbody>
</table>

B) Transplant-eligible patients (age <65 years, no significant co-morbidities, no immune suppression) with early Systemic and CNS lymphoma (prior to completing RCHOP x6): RCHOP and HDMTX x4 cycles then RDHAP for stem cell mobilization and collection, then R-TBuM/ASCT.

<table>
<thead>
<tr>
<th>Week</th>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Methotrexate 3.5 g/m² q14d</td>
<td>X*</td>
<td>X**</td>
</tr>
<tr>
<td>1</td>
<td>R-CHOP</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>rituximab 1400mg sc days 1,4 dexamethasone 20 mg days 1-4 cisplatin 35 mg/m² days 1,2 cytarabine 2 g/m² x1 dose, days 1,2 G-CSF 5-10 µg/kg day 8-13 Apheresis day 13 or 14</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3</td>
<td>R-TbuM/ ASCT (ritux d-7, thiotepa 250mg/m² d-5, busulfan 3.2 mg/kg day -4 to -2, melphalan 100 mg/m² d-1, ASCT d 0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*HDMTX prior to RCHOP#1 if CNS and systemic lymphoma both identified at time of initial diagnosis. **If CNS lymphoma identified after RCHOP initiated but systemic disease responding to RCHOP, then plan for at least 4 doses HDMTX q14d with subsequent cycles RCHOP before proceeding to R-DHAP.

* Male IBW = 50kg + 2.3kg x inches > 5ft, Female IBW = 45.5 kg + 2.3kg x inches> 5ft.
Step 1. Induction: RCHOP q21d as well as high-dose methotrexate q14 days x 4 cycles

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications (HDMTX component)</th>
<th>Other Orders</th>
</tr>
</thead>
</table>
| ADMISSION 0 | 2000hr - IV D5W + 20meq KCL/L + 2 amps NaHCO3/L @ 200mL/hour x 5 days | • Daily weights
• Daily CBC & differential, EP, creatinine, glucose
• ALT,AlkP,LDH,bilirubin,Alb,Ca,Mg
• LFTs, Ca, lipase, every Monday & Thursday |
| 1 | 0800hr - Kytril 1mg IV
0800hr - **methotrexate** 3500mg/m² IV over 2 hours cycles 1-4 | 0700hr - Urine pH twice daily, call MD if <7.0 |
| 2-4 | 0800hr - folinic acid (leucovorin) 25 mg IV q6 hours until methotrexate level < 0.05
Continue hydration until methotrexate level <0.05 | 0500-0800hr – methotrexate level daily
(expect level < 10 today) |
| 5 | • Discharge once methotrexate level <0.05
• If level 0.01-0.05, discharge on leucovorin 5mg p.o. q6 hours x 2-3 days
• Discharge meds: septran 1 daily or dapsone 50mg daily x 6-9 months; consider dexamethasone taper if on dexamethasone
• Remember coumadin/LMWH and dilantin if patient is on these medications | |

Step 2. Rituximab/DHAP x 1 cycle for stem cell collection after 4 cycles of methotrexate

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
</table>
| 1 | 0800hr - hydrocortisone 100mg IV, Benadryl, Zantac, Tylenol
0900hr - **rituximab** 1400mg sc
0900hr - IV 1L NS
0900hr – dexamethasone 20mg p.o./IV daily x 4 days
0900hr – Kytril 1mg IV or 2mg p.o. x 3-4 days
0900hr – aprepitent protocol p.o. x 3 days
1000hr – **cisplatin** 35mg/m² IV over 2 hours with mannitol 25g and 500mL NS
1200hr– cytarabine 2g/m² IV over 2 hours x 1 doses (1.5g/m² if >60yr) | • Weight
• CBC & differential, EP, creatinine, glucose
• ALT,AlkP,LDH,bilirubin,Alb,Ca,Mg |
| 2 | 0800hr – dexamethasone Kytril, Aprepitent continued
1000hr – **cisplatin** 35mg/m² IV over 2 hours with mannitol 25g and 500mL NS
1200hr– cytarabine 2g/m² IV over 2 hours x 1 doses (1.5g/m² if >60yr) | |
| 4 | Rituximab 1400mg sc | |
| 8-13 | 1000hr – G-CSF 480-600μg subcutaneous daily until apheresis completed (plan for apheresis approximately day 13-15, once ANC>5, Plt >75 and CD34>20) | Daily CBC & differential starting day 10 |
Step 3. R-TBuM/ASCT consolidation after response to MTX and RDHAP Induction

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADMISSION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day -7</td>
<td>Allopurinol 300 mg p.o. daily until day 0</td>
<td>• Consult dietician, physiotherapy</td>
</tr>
<tr>
<td></td>
<td>Premeds: Hydrocortisone 100mg IV, Benadryl 50mg IV,</td>
<td>• Low bacteria diet. 24hour intake</td>
</tr>
<tr>
<td></td>
<td>Zantac 50mg IV, Tylenol 650mg p.o.</td>
<td>• Mouth protocol; record intake and output</td>
</tr>
<tr>
<td></td>
<td>rituximab 375mg/m² IV (first dose long infusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>protocol)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2200hr - D5½ N/S + 20 mEq KCL/L @ 125 mL/hour until</td>
<td></td>
</tr>
<tr>
<td></td>
<td>day -1</td>
<td></td>
</tr>
<tr>
<td>-6 & -5</td>
<td>0800hr – thiopeta 250 mg/m² IV over 2 hours x 2</td>
<td>• 0800hr – Granisetron 2 mg IV daily x 8 days</td>
</tr>
<tr>
<td></td>
<td>days (use ideal weight)</td>
<td>• EP daily x 31days</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Shower/Bath q6 hours x 3 days; avoid skin creams</td>
</tr>
<tr>
<td>-4 to -2</td>
<td>0900 - busulfan 3.2 mg/kg IV daily x 3 days</td>
<td>• lorazepam prophylaxis x 4 days</td>
</tr>
<tr>
<td></td>
<td>(use Ideal weight)</td>
<td>• CBC & differential daily x 31 days</td>
</tr>
<tr>
<td>-1</td>
<td>10:00 - melphalan 100mg/m² (actual BSA) IV over 5</td>
<td>• ALT, Alk Phos, bilirubin, alb, Ca, Mg, every Monday & Thursday</td>
</tr>
<tr>
<td></td>
<td>minutes</td>
<td>• PT, PTT every Monday</td>
</tr>
<tr>
<td></td>
<td>10:15 – Lasix 20mg IV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:30 - mannitol 20% 250 mL IVPB over 1 hour</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11:30 - IV 1L NS @ 500 mL/hour for 3 hours</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14:30 -IV 1L NS with 40 mEq KCL/L @ 125 mL/hour x 18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hours</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Autologous Blood Stem Cell INFUSION</td>
<td></td>
</tr>
<tr>
<td>+7</td>
<td>G-CSF 300 µg (if less than 70kg) or 480µg (if over</td>
<td>• Mycostatin 500,000 units q2-4 hours</td>
</tr>
<tr>
<td></td>
<td>70kg) subcutaneous daily until post-nadir ANC > 1.5</td>
<td>• Septra RS 1 tab p.o. daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Acyclovir 5 mg/kg twice daily IV or 400 mg p.o. four times daily</td>
</tr>
</tbody>
</table>

C) Transplant-eligible patients (age <65 years, no significant co-morbidities, no immune suppression) with late relapse (prior RCHOP x6) with systemic and CNS lymphoma: HDMTX-Ifosfamide-etopside x2 then RDHAP for stem cell mobilization and collection, then R-TBuM/ASCT

<table>
<thead>
<tr>
<th>Week</th>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>high-dose methotrexate 3.5 g/m² d1</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rituximab 375 mg/m² d2</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ifosfamide 1.5 g/m² d3-5</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etoposide 100 mg/m² d3-5</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rituximab 1400mg sc days 1,4</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>dexamethasone 20 mg days 1-4</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>cisplatin 35 mg/m² days 1,2</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>cytarabine 2 g/m² x1 dose, days 1,2</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>G-CSF 5-10 µg/kg day 8-13</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Apheresis day 13 or 14</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>R-TbuM/ ASCT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ritux d-7 + thiopeta 250mg/m² d -6,-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>busulfan 3.2 mg/kg day -4 to -2,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>melphalan 100 mg/m² d-1, ASCT d 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 1. Induction: R-IE and high-dose methotrexate x 2 cycles (HDMTX x3)
Male IBW = 50kg + 2.3kg x inches > 5ft, Female IBW = 45.5 kg + 2.3kg x inches > 5ft.

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADMISSION</td>
<td>2000hr - IV D5W + 20meq KCL/L + 2 amps NaHCO3/L @ 200mL/hour x 5 days</td>
<td>• Daily weights</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>• Daily CBC & differential, EP, creatinine, glucose</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ALT, AlkP, LDH, bilirubin, Alb, Ca, Mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• LFTs, Ca, lipase, every Monday & Thursday</td>
</tr>
<tr>
<td>1</td>
<td>0800hr - Kytril 1mg IV</td>
<td>0700hr - Urine pH twice daily, call MD if <7.0</td>
</tr>
<tr>
<td></td>
<td>0800hr - methotrexate 3500mg/m² IV over 2 hours cycles 1-4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0800hr - folinic acid (leucovorin) 25 mg IV q6 hours until methotrexate level < 0.05</td>
<td>0500-0800hr - methotrexate level daily (expect level < 10 today)</td>
</tr>
<tr>
<td></td>
<td>Continue hydration until methotrexate level <0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000hr – Rituximab 375mg/m² IV</td>
<td></td>
</tr>
<tr>
<td>3-5</td>
<td>0800hr – Kytril 2mg IV, dexamethasone 10mg IV daily x 3d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0800hr – N/S IV 500mL/hour x 1 hour daily x 3d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0900hr – Mesna 0.5 g IV daily x 3d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0900hr - ifosfamide 1.5g/m² with 1g Mesna IV over 3 hours daily x 3d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1200hr – Mesna 0.5 g IV daily x 3d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1200hr – 1/2NS IV 250mL/hour x 4 hours daily x 3d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1200hr – Etoposide 100 mg/m² IV daily x 3d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1600hr – Mesna 1.0 g IV daily x 3d</td>
<td></td>
</tr>
<tr>
<td>5 or 6</td>
<td></td>
<td>• Discharge once methotrexate level <0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If level 0.01-0.05, discharge on leucovorin 5mg p.o. q6 hours x 2-3 days</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Discharge meds: septra DS 1 daily or dapsone 50mg daily x 6-9 months; consider dexamethasone taper if on dexamethasone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Remember coumadin/LMWH and dilantin if patient is on these medications</td>
</tr>
</tbody>
</table>

* Male IBW = 50kg + 2.3kg x inches > 5ft, Female IBW = 45.5 kg + 2.3kg x inches> 5ft.

Step 2. Rituximab/DHAP x 1 cycle for stem cell collection after 4 cycles of methotrexate

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0800hr - hydrocortisone 100mg IV, Benadryl, Zantac, Tylenol</td>
<td>• Weight</td>
</tr>
<tr>
<td></td>
<td>0900hr - rituximab 1400mg sc</td>
<td>• CBC & differential, EP, creatinine, glucose</td>
</tr>
<tr>
<td></td>
<td>0900hr - IV 1L NS</td>
<td>• ALT, AlkP, LDH, bilirubin, Alb, Ca, Mg</td>
</tr>
<tr>
<td></td>
<td>0900hr – dexamethasone 20mg p.o./IV daily x 4 days</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0900hr – Kytril 1mg IV or 2mg p.o. x 3-4 days</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0900hr – aprepitent protocol p.o. x 3 days</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000hr – cisplatin 35mg/m² IV over 2 hours with mannitol 25g and 500mL NS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1200hr- cytarabine 2g/m² IV over 2 hours x 1 doses (1.5g/m² if >60yr)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0800hr – dexamethasone Kytril, Aprepitent continued</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000hr – cisplatin 35mg/m² IV over 2 hours with mannitol 25g and 500mL NS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1200hr- cytarabine 2g/m² IV over 2 hours x 1 doses (1.5g/m² if >60yr)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Rituximab 1400mg sc</td>
<td></td>
</tr>
<tr>
<td>8-13</td>
<td>1000hr – G-CSF 480-600μg subcutaneous daily until apheresis completed (plan for apheresis approximately day 13-15, once ANC>5, Plt >75 and CD34>20)</td>
<td>Daily CBC & differential starting day 10</td>
</tr>
</tbody>
</table>

Last Reviewed: July 2021
Step 3. R-TBuM/ASCT consolidation after response to MTX and RDHAP Induction

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
</table>
| ADMISSION Day -7 | Allopurinol 300 mg p.o. daily until day 0 Premeds: Hydrocortisone 100mg IV, Benadryl 50mg IV, Zantac 50mg IV, Tylenol 650mg p.o. -rituximab 375mg/m² IV (first dose long infusion protocol) 2200hr - D5½ N/S + 20 mEq KCL/L @ 125 mL/hour until day -1 | • Consult dietician, physiotherapy
• Low bacteria diet, 24hour intake
• Mouth protocol; record intake and output |
| -6 & -5 | 0800hr – thiotepa 250 mg/m² IV over 2 hours x 2 days (use ideal BSA) | 0800hr – Granisetron 2 mg IV daily x 8 days
• EP daily x 31days
• Shower/Bath q6 hours x 3 days; avoid skin creams |
| -4 to -2 | 0900 - busulfan 3.2 mg/kg IV daily x 3 days (use Ideal weight) | lorazepam prophylaxis x 4 days
• CBC & differential daily x 31 days
• ALT, Alk Phos, bilirubin, alb, Ca, Mg, every Monday & Thursday
• PT, PTT every Monday |
| -1 | 10:00 -melphalan 100mg/m² (actual BSA) IV over 5 minutes
10:15 – Lasix 20mg IV
10:30 - mannitol 20% 250 mL IVPB over 1 hour
11:30 - IV 1L NS @ 500 mL/hour for 3 hours
14:30 -IV 1L NS with 40 mEq KCL/L @ 125 mL/hour x 18 hours |
• Mycostatin 500,000 units q2-4 hours
• Septra RS 1 tab p.o. daily
• Acyclovir 5 mg/kg twice daily IV or 400 mg p.o. four times daily |
| 0 | Autologous Blood Stem Cell INFUSION | |
| +7 | G-CSF 300 µg (if less than 70kg) or 480µg (if over 70kg) subcutaneous daily until post-nadir ANC > 1.5 | |
VIII. Secondary CNS Lymphoma Protocol

D) Transplant-ineligible patients (age >65 years, significant co-morbidities, or immune suppression) with isolated CNS relapse/progression following complete response of systemic lymphoma to RCHOP. (consider only for highly motivated patients who wish curative intent therapy. Otherwise palliation with IT chemotherapy, radiotherapy, or supportive care).

<table>
<thead>
<tr>
<th>Week</th>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 1. Induction: high-dose methotrexate/procarbazine x 1 cycle

Day	Medications
0700hr | Urine pH twice daily, call MD if <7.0
0500-0800hr | Methotrexate level daily (expect level < 10 d2, <1 d3)
0500-0800hr | Methotrexate Level daily

Other Orders
- Daily weights
- Daily CBC & differential, EP, creatinine, glucose
- ALT, AlkP, LDH, bilirubin, Alb, Ca, Mg
- LFTs, Ca, lipase, every Monday & Thursday

* Male IBW = 50kg + 2.3kg x inches > 5ft, Female IBW = 45.5 kg + 2.3kg x inches > 5ft. Adjusted BW = IBW + [40% x (actual – IBW)]
Step 2. High-dose methotrexate/cytarabine consolidation q21 days x 4 cycles

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
</table>
| ADMISSION 0 | | • Daily weights
| | | • Daily CBC & differential, EP, creatinine, glucose
| | | • ALT, AlkP, LDH, bilirubin, Alb, Ca, Mg
| | | • ALT, Alk P, bilirubin, Ca, lipase, every Monday & Thursday |
| 1 | 0800hr - Kytril 1mg IV
0800hr - **methotrexate** 3500mg/m² IV over 2 hours | 07:00 - Urine pH bid, call MD if <7.0
0500-08:00 – Methotrexate Level daily (expect <10 d2, <1 d3, <0.1 d4, <0.05 d5) |
| 2-3 | 0800hr- folinic acid (leucovorin) 25 mg IV q6 hours until methotrexate level < 0.05
- Continue hydration until methotrexate level <0.05
0800hr – Kytril 2mg IV, Decadron 10mg IV
1000hr – **cytarabine** 2g/m² IV over 2 hours twice daily x 2 days; reduce to 1.5g/m² if age >60 years or creatinine >100 | |
| 5 | Discharge once methotrexate level <0.05
If level 0.01-0.05, discharge on leucovorin 5mg p.o. q6 hours x 2-3 days (other meds as step 1 above) | |
| 8-12 | 10:00 – G-CSF 480-600 µg subcutaneous daily until post-nadir ANC >1.5 | Daily CBC & diff starting d10 |

* Male IBW = 50kg + 2.3kg x inches > 5ft, Female IBW = 45.5 kg + 2.3kg x inches > 5ft. Adjusted BW = IBW + [40% x (actual – IBW)]

Step 3. Ifosfamide consolidation after response to methotrexate and high-dose cytarabine

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
</table>
| 15 or 16 | 0800hr – Kytril 2mg IV, dexamethasone 10mg IV daily x 3d
0800hr – N/S IV 500mL/hour x 1 hour daily x 3d
0900hr – Mesna 1.0 g IV daily x 3d
0900hr – Ifosfamide 2g/m² with 1g Mesna IV over 3 hours daily x 3d
1200hr – Mesna 0.5 g IV daily x 3d
1200hr – 1/2NS IV 250mL/hour x 4 hours daily x 3d
1600hr – Mesna 1.0 g IV daily x 3d | • weight (call MD if >2kg above day 1)
• CBC & differential, EP, creatinine, glucose
• ALT, AlkP, LDH, bilirubin, Alb, Ca, Mg |
E) Transplant-ineligible patients (age >65 years, significant co-morbidities, or immune suppression) with early Systemic and CNS lymphoma prior to completing initial RCHOP x6. (consider only for highly motivated patients who wish curative intent therapy. Otherwise palliation).

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Methotrexate 3.5 g/m² q14d</td>
<td>X*</td>
<td>X*</td>
</tr>
<tr>
<td>R-CHOP</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>rituximab 1400mg sc days 1,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dexamethasone 20 mg days 1-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cytarabine 2 g/m² x1 dose, days 1 and 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-CSF 5-10 µg/kg day 8-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ifosfamide 2g/m² daily days 1-3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*HDMTX prior to RCHOP#1 if CNS and systemic lymphoma both identified at time of initial diagnosis.
**If CNS lymphoma identified after RCHOP initiated but systemic disease responding to RCHOP, then plan for at least 4 doses HDMTX q14d with subsequent cycles RCHOP before proceeding to R-AraC.

* Male IBW = 50kg + 2.3kg x inches > 5ft, Female IBW = 45.5 kg + 2.3kg x inches> 5ft.

Step 1. Induction: RCHOP q21d as well as high-dose methotrexate q14d x 4 cycles

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications (HDMTX component)</th>
<th>Other Orders</th>
</tr>
</thead>
</table>
| ADMISSION 0 | 2000hr - IV D5W + 20meq KCL/L + 2 amps NaHCO3/L @ 200mL/hour x 5 days | • Daily weights
• Daily CBC & differential, EP, creatinine, gluc
• ALT,AlkP,LDH,bilirubin,Alb,Ca,Mg
• LFTs, Ca, lipase, every Monday & Thursday |
| 1 | 0800hr - Kytril 1mg IV 0800hr - methotrexate 3500mg/m² IV over 2 hours cycles 1-4 | 0700hr - Urine pH twice daily, call MD if <7.0 |
| 2-4 | 0800hr- folinic acid (leucovorin) 25 mg IV q6 hours until methotrexate level < 0.05
Continue hydration until methotrexate level <0.05 | 0500-0800hr – methotrexate level daily
(expect level < 10 today) |
| 5 | • Discharge once methotrexate level <0.05
• If level 0.01-0.05, discharge on leucovorin 5mg p.o. q6 hours x 2-3 days
• Discharge meds: septran DS 1 daily or dapsone 50mg daily x 6-9 months; consider dexamethasone taper if on dexamethasone
• Remember coumadin/LMWH and dilantin if patient is on these medications | |
Step 2. Rituximab/DHAP x 1 cycle for stem cell collection after 4 cycles of methotrexate

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0800hr - hydrocortisone 100mg IV, Benadryl, Zantac, Tylenol 0900hr - rituximab 1400mg sc 0900hr - IV 1L NS 0900hr – dexamethasone 20mg p.o./IV daily x 4 days 0900hr – Kytril 1mg IV or 2mg p.o. x 3-4 days 0900hr – aprepitent protocol p.o. x 3 days 1000hr – cisplatin 35mg/m² IV over 2 hours with mannitol 25g and 500mL NS 1200hr- cytarabine 2g/m² IV over 2 hours x 1 doses (1.5g/m² if >60yr)</td>
<td>• Weight • CBC & differential, EP, creatinine, glucose • ALT,AlkP,LDH,bilirubin,Alb,Ca,Mg</td>
</tr>
<tr>
<td>2</td>
<td>0800hr – dexamethasone Kytril, Aprepitent continued 1000hr – cisplatin 35mg/m² IV over 2 hours with mannitol 25g and 500mL NS 1200hr- cytarabine 2g/m² IV over 2 hours x 1 doses (1.5g/m² if >60yr)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Rituximab 1400mg sc</td>
<td></td>
</tr>
<tr>
<td>8-13</td>
<td>1000hr – G-CSF 480-600μg subcutaneous daily until apheresis completed (plan for apheresis approximately day 13-15, once ANC>5, Plt >75 and CD34>20)</td>
<td>Daily CBC & differential starting day 10</td>
</tr>
</tbody>
</table>

Step 3. Ifosfamide consolidation after response to methotrexate and high-dose cytarabine

<table>
<thead>
<tr>
<th>Day</th>
<th>Medications</th>
<th>Other Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 or 16</td>
<td>0800hr – Kytril 2mg IV, dexamethasone 10mg IV daily x 3d 0800hr – N/S IV 500mL/hour x 1 hour daily x 3d 0900hr – Mesna 1.0 g IV daily x 3d 0900hr – Ifosfamide 2g/m² with 1g Mesna IV over 3 hours daily x 3d 1200hr – Mesna 0.5 g IV daily x 3d 1200hr – 1/2NS IV 250mL/hour x 4 hours daily x 3d 1600hr – Mesna 1.0 g IV daily x 3d</td>
<td>• weight (call MD if >2kg above day 1) • CBC & differential, EP, creatinine, glucose • ALT,AlkP,LDH,bilirubin,Alb,Ca,Mg</td>
</tr>
</tbody>
</table>

F) Transplant-ineligible patients (age >65 years, significant co-morbidities, or immune suppression) with late relapse (prior RCHOP x6) with relapsed systemic and CNS lymphoma.

This situation is unfortunately associated with extremely poor prognosis, and generally should be treated with palliative intent. Treatments could include IT chemotherapy, radiotherapy, decadron, or best supportive care.
Appendix B: General Radiotherapy Guidelines

Aggressive Non-Hodgkin Lymphomas:

30Gy/15-35Gy/20 is recommended in lymphoma subtypes and situations except:
1. Nasal NK/T cell lymphomas: 30Gy/10 or 40-50Gy +/- concurrent cisplatin
3. Primary or secondary CNS lymphoma: Whole brain radiotherapy
 - Palliative: 20Gy/5 - 35Gy/20 +/- 10Gy/5 boost depending on age, KPS, anticipated life expectancy, status of extracranial disease?
 - Curative, post-methotrexate: 23.4Gy/13 fractions if in CR, or 45Gy/25 fractions (?alternative 30Gy/15 + boost 15Gy/8 or 35 Gy/20 + boost 10 Gy/5?) in PR

Indolent Lymphoma:

24Gy/12 - 30Gy/20 fractions is generally recommended for most subtypes and situations except:
1. Palliation: lower doses may be used for palliation such as 4Gy/2 fractions
2. Contiguous stage II disease, curative intent: higher doses up to 40Gy may be used
3. Gastric MALT 30Gy/20

Hodgkin Lymphoma:

20Gy/10 for early stage favorable, 30Gy/15 early stage unfavorable and advanced stage is recommended in lymphoma subtypes and situations except for nodular lymphocyte-predominant Hodgkin disease (NLPHD):
- IFRT alone to 30Gy/15-35Gy/20 fractions

What is INRT/ISRT?9-11:
- definitions are per ILROG guidelines and depends of whether radiation is sole treatment or part of combined modality regimen

Role of IMRT/VMAT/TOMO12,13:
- role of IMRT/VMAT/TOMO over 3DCRT is at discretion of treating radiation oncologist- this is determined on a case by case basis
- the low dose bath is a consideration when using IMRT as it relates to potential long term risk of second malignancies

Role of PET in Planning14-17:
- this is outlined in the ILROG guidelines for HL, nodal HL and extranodal HL
Appendix C: Prognostic Models

<table>
<thead>
<tr>
<th>ECOG Performance Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Fully active, able to carry on all pre-disease activities without restriction.</td>
</tr>
<tr>
<td>1</td>
<td>Restricted in physically strenuous activity but ambulatory and able to carry out work of a light or sedentary nature (e.g. light housework, office work).</td>
</tr>
<tr>
<td>2</td>
<td>Ambulatory and capable of all self-care but unable to carry out any work activities. Up and about more than 50% of waking hours.</td>
</tr>
<tr>
<td>3</td>
<td>Capable of only limited self-care. Confined to bed or chair more than 50% of waking hours.</td>
</tr>
<tr>
<td>4</td>
<td>Completely disabled. Cannot carry on any self-care. Totally confined to bed or chair.</td>
</tr>
</tbody>
</table>

International Prognostic Index (IPI) for DLBCL Following CHOP-Type Chemotherapy

<table>
<thead>
<tr>
<th>Factors</th>
<th># of Factors</th>
<th>5 year PFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age > 60 years</td>
<td>0-1</td>
<td>60%</td>
</tr>
<tr>
<td>ECOG 2-4</td>
<td>2-3</td>
<td>30%</td>
</tr>
<tr>
<td>Stage III/IV</td>
<td>4-5</td>
<td>15%</td>
</tr>
<tr>
<td>ENS > 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased LDH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Revised IPI for DLBCL Following R-CHOP Chemotherapy

<table>
<thead>
<tr>
<th>Factors</th>
<th># of Factors</th>
<th>% of Patients</th>
<th>4 year PFS</th>
<th>4 year DSS</th>
<th>4 year OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age > 60 years</td>
<td>0</td>
<td>11</td>
<td>96%</td>
<td>95%</td>
<td>95%</td>
</tr>
<tr>
<td>ECOG 2-4</td>
<td>1-2</td>
<td>48</td>
<td>81%</td>
<td>83%</td>
<td>79%</td>
</tr>
<tr>
<td>Stage III/IV</td>
<td>3-5</td>
<td>41</td>
<td>55%</td>
<td>56%</td>
<td>55%</td>
</tr>
<tr>
<td>ENS > 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased LDH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-CHOP for DLBCL by Elevated LDH and Stage 3-4

<table>
<thead>
<tr>
<th># of Factors</th>
<th>% of Patients</th>
<th>4 year PFS</th>
<th>4 year DSS</th>
<th>4 year OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>27</td>
<td>92%</td>
<td>90%</td>
<td>84%</td>
</tr>
<tr>
<td>1</td>
<td>38</td>
<td>78%</td>
<td>79%</td>
<td>77%</td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>53%</td>
<td>56%</td>
<td>55%</td>
</tr>
</tbody>
</table>

An online prognostic calculator is available at: http://www.qxmd.com/calculate-online/hematology/prognosis-large-b-cell-lymphoma-r-ipi

Modified IPI for Non-Bulky Stage I-IIA DLBCL Treated with CHOP x 3 cycles and IFRT

<table>
<thead>
<tr>
<th>Factors</th>
<th># of Factors</th>
<th>5 year PFS</th>
<th>10 year PFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age > 60 yrs</td>
<td>0</td>
<td>94%</td>
<td>89%</td>
</tr>
<tr>
<td>ECOG 2-4</td>
<td>1-2</td>
<td>79%</td>
<td>73%</td>
</tr>
<tr>
<td>Stage II</td>
<td>3-4</td>
<td>60%</td>
<td>50%</td>
</tr>
</tbody>
</table>
Salvage Age-Adjusted IPI for Relapsed DLBCL

<table>
<thead>
<tr>
<th>Factors</th>
<th># of Factors</th>
<th>~ PFS for HDCT/ASCT Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage III/IV</td>
<td>0</td>
<td>70%</td>
</tr>
<tr>
<td>Elevated LDH</td>
<td>1</td>
<td>50%</td>
</tr>
<tr>
<td>ECOG 2-4</td>
<td>2</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10%</td>
</tr>
</tbody>
</table>

Primary CNS Lymphoma (Memorial Sloan Kettering Cancer Center Model)

<table>
<thead>
<tr>
<th>Risk Group</th>
<th>mOS</th>
<th>5 year OS</th>
<th>mFFS</th>
<th>5 year FFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age < 50 years</td>
<td>5-8 years</td>
<td>50-60%</td>
<td>2-5 years</td>
<td>35-40%</td>
</tr>
<tr>
<td>Age >50 years, KPS ≥ 70%</td>
<td>2-3 years</td>
<td>15-35%</td>
<td>1.5 years</td>
<td>10-20%</td>
</tr>
<tr>
<td>Age >50 years, KPS < 70%</td>
<td>1 year</td>
<td>10%</td>
<td>0.5-1 year</td>
<td>5-10%</td>
</tr>
</tbody>
</table>

Simplified IELSG Primary CNS Lymphoma (Leon Berard Cancer Centre Model)

<table>
<thead>
<tr>
<th>Factors</th>
<th># of Factors</th>
<th>mOS</th>
<th>5 year OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age > 60 years</td>
<td>0</td>
<td>6 years</td>
<td>60%</td>
</tr>
<tr>
<td>Elevated LDH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep Tumour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o Cerebellum</td>
<td>1</td>
<td>4 years</td>
<td>40%</td>
</tr>
<tr>
<td>o Periventricular</td>
<td>2</td>
<td>1 year</td>
<td>23%</td>
</tr>
<tr>
<td>o Basal ganglion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o Brainstem</td>
<td>3</td>
<td>0.5 years</td>
<td>0%</td>
</tr>
</tbody>
</table>

Follicular Lymphoma Internacional Prognostic Index (FLIPI) Pre-dated Rituximab-Chemotherapy

<table>
<thead>
<tr>
<th>Factors</th>
<th>Prognosis</th>
<th># Factors</th>
<th>% Patients</th>
<th>5 year OS</th>
<th>10 year OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≥ 60 years</td>
<td>Good</td>
<td>0-1</td>
<td>36</td>
<td>90%</td>
<td>70%</td>
</tr>
<tr>
<td>Stage III-IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased LDH</td>
<td>Intermediate</td>
<td>2</td>
<td>37</td>
<td>78%</td>
<td>50%</td>
</tr>
<tr>
<td>Hb < 120 g/L</td>
<td>Poor</td>
<td>3-5</td>
<td>27</td>
<td>53%</td>
<td>35%</td>
</tr>
<tr>
<td>5+ nodal sites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An online prognostic calculator is available at:

FLIPI 2

<table>
<thead>
<tr>
<th>Factors</th>
<th>Prognosis</th>
<th># Factors</th>
<th>% Patients</th>
<th>3 year PFS</th>
<th>5 year PFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age > 60 years</td>
<td>Good</td>
<td>0</td>
<td>20</td>
<td>91%</td>
<td>80%</td>
</tr>
<tr>
<td>Marrow involvement</td>
<td>Intermediate</td>
<td>1-2</td>
<td>53</td>
<td>69%</td>
<td>51%</td>
</tr>
<tr>
<td>Increased B2M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hb < 120 g/L</td>
<td>Poor</td>
<td>3-5</td>
<td>27</td>
<td>51%</td>
<td>19%</td>
</tr>
<tr>
<td>Node >6cm longest diameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hodgkin Lymphoma International Prognostic Score (IPS) for Advanced Disease

<table>
<thead>
<tr>
<th>Factors</th>
<th># of Factors</th>
<th>5 year FFS with ABVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≥ 45 years</td>
<td>0-1</td>
<td>80%</td>
</tr>
<tr>
<td>Male</td>
<td>2</td>
<td>70%</td>
</tr>
<tr>
<td>Stage IV</td>
<td>3</td>
<td>60%</td>
</tr>
<tr>
<td>Albumin < 40 g/L</td>
<td>4-7</td>
<td>50%</td>
</tr>
<tr>
<td>Hb < 105 g/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WBC > 15 x 10^9/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphocyte < 0.6 x 10^9/L or < 8% WBC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An online prognostic calculator is available at: http://www.qxmd.com/calculate-online/hematology/hasenclever-hodgkins-prognosis-score-ips

Prognosis of Hodgkin Lymphoma Relapsed After Prior Chemotherapy

<table>
<thead>
<tr>
<th>Factors</th>
<th># of Factors</th>
<th>2nd Line Chemo</th>
<th>HDCT/ASCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to relapse < 1 year</td>
<td>0</td>
<td>70%</td>
<td>100%</td>
</tr>
<tr>
<td>Relapse stage III-IV</td>
<td>1</td>
<td>60%</td>
<td>70%</td>
</tr>
<tr>
<td>Hb < 105 female, 120 male</td>
<td>2</td>
<td>30%</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0%</td>
<td>50%</td>
</tr>
</tbody>
</table>

* 5yr OS by second line therapy.
* Freedom from second failure was 50% for 0-1 factor, 35% for 2 factors, and 15% for 3 factors.

Mantle Cell Lymphoma (MIPI)

<table>
<thead>
<tr>
<th>Points</th>
<th>Age</th>
<th>ECOG</th>
<th>LDH</th>
<th>WBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td><50</td>
<td>0-1</td>
<td><0.67 ULN</td>
<td><6.7</td>
</tr>
<tr>
<td>1</td>
<td>50-59</td>
<td>-</td>
<td>0.67-0.99ULN</td>
<td>6.7-9.99</td>
</tr>
<tr>
<td>2</td>
<td>60-69</td>
<td>2-4</td>
<td>1-1.49 ULN</td>
<td>10.0-14.99</td>
</tr>
<tr>
<td>3</td>
<td>70+</td>
<td>-</td>
<td>≥1.5 ULN</td>
<td>≥15.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Points</th>
<th>Age</th>
<th>ECOG</th>
<th>LDH (ULN 235)</th>
<th>WBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td><50</td>
<td>0-1</td>
<td><157</td>
<td><6.7</td>
</tr>
<tr>
<td>2</td>
<td>60-69</td>
<td>2-4</td>
<td>235-352</td>
<td>10.0-14.99</td>
</tr>
<tr>
<td>3</td>
<td>70+</td>
<td>-</td>
<td>>352</td>
<td>>15.0</td>
</tr>
</tbody>
</table>

Risk
- Low: 0-3
- Intermediate: 4-5
- High: 6-11

Post-Transplantation Lymphoproliferative Disease (PTLD) Prognostic Scoring Systems:

1. **Evens *et al.*, 2010**

Score 1 point for each: hypoalbumenia, bone marrow involvement, CNS involvement

<table>
<thead>
<tr>
<th># of Factors</th>
<th>Overall 3 year PFS</th>
<th>Overall 3 year OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>84%</td>
<td>93%</td>
</tr>
<tr>
<td>1</td>
<td>66%</td>
<td>68%</td>
</tr>
<tr>
<td>2-3</td>
<td>7%</td>
<td>11%</td>
</tr>
</tbody>
</table>

Patients who received rituximab-based therapy as part of their initial treatment had a 3-year PFS of 70% and an OS of 73% compared with a 3-year PFS of 21% (**p**<0.0001) and an OS of 33% (**p**=0.0001) for patients who did not receive rituximab.

2. **Leblond *et al.*, 2001**

<table>
<thead>
<tr>
<th>Risk Group</th>
<th>PS and/or</th>
<th># of Sites</th>
<th>mOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>low-risk</td>
<td>PS < 2</td>
<td>1</td>
<td>>5 years</td>
</tr>
<tr>
<td>intermediate</td>
<td>PS > 2</td>
<td>2 or more</td>
<td>3 years</td>
</tr>
<tr>
<td>high risk</td>
<td>PS > 2</td>
<td>2 or more</td>
<td>1 month</td>
</tr>
</tbody>
</table>

Waldenström Macroglobulinemia

<table>
<thead>
<tr>
<th>Study</th>
<th>Prognostic Factors</th>
<th>Stratification</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gobbi et al, 1994</td>
<td>Hb<9 g/dL, Age >70 years, Weight loss, Cryoglobulinaemia</td>
<td>0-1 factor, 0-2 2-4 factors</td>
<td>mOS 80 months, mOS 48 months</td>
</tr>
<tr>
<td>Morel et al, 2000</td>
<td>Age ≥ 65 years, Albumin <40 g/L, 1 cytopenia (1-point), >1 cytopenia (2-points)</td>
<td>0-1 factor, 2 factors, 3-4 factors</td>
<td>5 year survival 87%, 5 year survival 62%, 5 year survival 25%</td>
</tr>
<tr>
<td>Dhodapkar et al, 2001</td>
<td>β2M >3 mg/L, Hb <12 g/dL, IgM >40 g/L</td>
<td>β2M<3 mg/L + Hb>12 g/dL, β2M<3 mg/L + Hb<12 g/dL, β2M>3 mg/L + IgM<40 g/L, β2M>3 mg/L + IgM>40 g/L</td>
<td>5 year survival 87%, 5 year survival 63%, 5 year survival 53%, 5 year survival 21%</td>
</tr>
<tr>
<td>Merlini et al, 2003</td>
<td>Age≥60 years, Hb<100 g/L, Albumin <35 g/L</td>
<td><60 years, Hb≥100, Alb>35, >60 years, Hb <100, Alb <35, Other combinations</td>
<td>mOS 178 months, mOS 33 months, mOS 84 months</td>
</tr>
</tbody>
</table>
CLL Prognostic Score from MD Anderson Cancer Center

<table>
<thead>
<tr>
<th>Factors</th>
<th># of Factors</th>
<th># of Patients</th>
<th>5 year OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age >60 years</td>
<td>0</td>
<td>364</td>
<td>96%</td>
</tr>
<tr>
<td>B2M >2 mg/L</td>
<td>1</td>
<td>623</td>
<td>79%</td>
</tr>
<tr>
<td>Alb < 35</td>
<td>2</td>
<td>497</td>
<td>69%</td>
</tr>
<tr>
<td>Creatinine > 1.6</td>
<td>3</td>
<td>70</td>
<td>30%</td>
</tr>
<tr>
<td>17p mutations</td>
<td>4-5</td>
<td>10</td>
<td>16%</td>
</tr>
</tbody>
</table>

CLL International Prognostic Score: Bahlo 2015ASCO, J Clin Oncol 33, 2015 (suppl; abstr 7002)

<table>
<thead>
<tr>
<th>Factors</th>
<th>Points</th>
<th>Risk Group</th>
<th>5 year OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age >65 years</td>
<td>1</td>
<td>Low (0-1 points)</td>
<td>93% (~90%)</td>
</tr>
<tr>
<td>Clinical Stage >1</td>
<td>1</td>
<td>Intermediate (2-3 points)</td>
<td>79% (~80%)</td>
</tr>
<tr>
<td>IGHV unmutated</td>
<td>2</td>
<td>High (4-6 points)</td>
<td>64% (~60%)</td>
</tr>
<tr>
<td>B2M >3.5 mg/L</td>
<td>2</td>
<td>Very high risk (7-10 points)</td>
<td>23% (~25%)</td>
</tr>
<tr>
<td>17p deletion or TP53 mutations</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The full analysis set was collected from eight phase 3 trials in France, Germany, the United Kingdom, the United States, and Poland (n=3,472 patients, median age 61 years (27-86 yrs)). 89% of patients had received treatment for CLL and median overall survival (OS) was 95 months. The model was externally validated in a third dataset comprising 845 patients with newly diagnosed CLL from the Mayo Clinic; 39% had received treatment for CLL. The final model of multivariate analysis identified 5 independent predictors for OS: TP53 (17p) mutation (deleted and/or mutated; hazard ratio [HR]: 4.2); IGHV mutation status (unmutated, HR: 2.6); B2M (>3.5 mg/L; HR: 2.0); clinical stage (Binet B/C or Rai I-IV, HR: 1.6); and age (>65 years, HR: 1.7). Using weighted grading, a prognostic score from 0 to 10 was derived that separated the patients into four different groups: low risk (score 0-1), intermediate risk (score 2-3), high risk (score 4-6), and very high risk (score 7-10). At 5 years, significantly different rates of OS were observed for the low to the very high risk group, 93%, 79%, 64%, and 23%, respectively (P<0.001; C-statistic c=0.72 [95% CI: 0.69, 0.76]). The multivariable model was confirmed on the internal validation datasets; in addition, the four risk groups were reproduced with on the Mayo dataset, with 5-year OS rates of 97%, 91%, 68% and 21%, respectively (P<0.001; C-statistic c=0.79 [95% CI: 0.74, 0.85]).
Appendix D: Lymphoma Response Criteria

<table>
<thead>
<tr>
<th>Response</th>
<th>Definition</th>
<th>Nodal Masses</th>
<th>Spleen, Liver</th>
<th>Bone Marrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>Disappearance of all evidence of disease</td>
<td>(a) FDG-avid or PET positive prior to therapy; mass of any size permitted if PET negative</td>
<td>not palpable, nodules disappeared</td>
<td>Infiltrate cleared on repeat biopsy; if indeterminate by morphology, immunohistochemistry should be negative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) Variably FDG-avid or PET negative; regression to normal size on CT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR</td>
<td>Regression of measurable disease and no new sites</td>
<td>> 50% decrease in SPD of up to 6 largest dominant masses; no increase in size of other nodes (a) FDG-avid or PET positive prior to therapy; one or more PET positive at previously involved site (b) Variably FDG-avid or PET negative; regression on CT</td>
<td>> 50% decrease in SPD of nodules (for single nodule in greatest transverse diameter); no increase in size of liver or spleen</td>
<td>Irrelevant if positive prior to therapy; cell type should be specified</td>
</tr>
<tr>
<td>SD</td>
<td>Failure to attain CR/PR or PD</td>
<td>(a) FDG-avid or PET positive prior to therapy; PET positive at prior sites of disease and no new sites on CT or PET (b) Variably FDG-avid or PET negative; no change in size of previous lesions on CT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relapsed Disease or PD</td>
<td>Any new lesion or increase by ≥ 50% of previously involved sites from nadir</td>
<td>Appearance of a new lesion(s) > 1.5 cm in any axis, ≥50% increase in SPD of more than one node, or ≥ 50% increase in longest diameter of a previously identified node > 1 cm in short axis</td>
<td>> 50% increase from nadir in the SPD of any previous lesions</td>
<td>New or recurrent involvement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lesions PET positive if FDG-avid lymphoma or PET positive prior to therapy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CR=complete response, FDG-PET=(18)F-fluorodeoxyglucose positron emission tomography, CT=computed tomography, PR=partial response, SPD=sum of the product of the diameters, SD=stable disease, PD=progressive disease.

LYMPHOMA RESPONSE CRITERIA

Complete Response (CR)

The designation of CR requires the following:

1. Complete disappearance of all detectable clinical evidence of disease and disease-related symptoms if present before therapy.

2a. Typically FDG-avid lymphoma: in patients with no pretreatment PET scan or when the PET scan was positive before therapy, a post-treatment residual mass of any size is permitted as long as it is PET negative.
2b. Variably FDG-avid lymphomas/FDG avidity unknown: in patients without a pretreatment PET scan, or if a pretreatment PET scan was negative, all lymph nodes and nodal masses must have regressed on CT to normal size (≤1.5 cm in their greatest transverse diameter for nodes >1.5 cm before therapy). Previously involved nodes that were 1.1 to 1.5 cm in their long axis and more than 1.0 cm in their short axis before treatment must have decreased to ≤1.0 cm in their short axis after treatment.

3. The spleen and/or liver, if considered enlarged before therapy on the basis of a physical examination or CT scan, should not be palpable on physical examination and should be considered normal size by imaging studies, and nodules related to lymphoma should disappear. However, determination of splenic involvement is not always reliable because a spleen considered normal in size may still contain lymphoma, whereas an enlarged spleen may reflect variations in anatomy, blood volume, the use of hematopoietic growth factors, or causes other than lymphoma.

4. If the bone marrow was involved by lymphoma before treatment, the infiltrate must have cleared on repeat bone marrow biopsy. The biopsy sample on which this determination is made must be adequate (with a goal of >20 mm unilateral core). If the sample is indeterminate by morphology, it should be negative by immunohistochemistry. A sample that is negative by immunohistochemistry but that demonstrates a small population of clonal lymphocytes by flow cytometry will be considered a CR until data become available demonstrating a clear difference in patient outcome.

Partial Response (PR)

The designation of PR requires all of the following:

1. At least a 50% decrease in sum of the product of the diameters (SPD) of up to six of the largest dominant nodes or nodal masses. These nodes or masses should be selected according to all of the following: they should be clearly measurable in at least 2 perpendicular dimensions; if possible they should be from disparate regions of the body; and they should include mediastinal and retroperitoneal areas of disease whenever these sites are involved.

2. No increase should be observed in the size of other nodes, liver, or spleen.

3. Splenic and hepatic nodules must regress by >50% in their SPD or, for single nodules, in the greatest transverse diameter.

4. With the exception of splenic and hepatic nodules, involvement of other organs is usually assessable and no measurable disease should be present.

5. Bone marrow assessment is irrelevant for determination of a PR if the sample was positive before treatment. However, if positive, the cell type should be specified (e.g., large-cell lymphoma or small neoplastic B cells). Patients who achieve a CR by the above criteria, but who have persistent morphologic bone marrow involvement will be considered partial responders. When the bone marrow was involved before therapy and a clinical CR was achieved, but with no bone marrow assessment after treatment, patients should be considered partial responders.
6. No new sites of disease should be observed.

7. Typically FDG-avid lymphoma: for patients with no pre-treatment PET scan or if the PET scan was positive before therapy, the post-treatment PET should be positive in at least one previously involved site.

8. Variably FDG-avid lymphomas/FDG-avidity unknown: for patients without a pre-treatment PET scan, or if a pre-treatment PET scan was negative, CT criteria should be used.

9. In patients with follicular lymphoma or mantle-cell lymphoma, a PET scan is only indicated with one or at most two residual masses that have regressed by more than 50% on CT; those with more than two residual lesions are unlikely to be PET negative and should be considered partial responders.

Stable Disease (SD)

Stable disease is defined as the following:

1. A patient is considered to have SD when he or she fails to attain the criteria needed for a CR or PR, but does not fulfill those for progressive disease (see Relapsed Disease [after CR]/Progressive Disease [after PR, SD]).

2. Typically FGD-avid lymphomas: the PET should be positive at prior sites of disease with no new areas of involvement on the post-treatment CT or PET.

3. Variably FDG-avid lymphomas/FDG-avidity unknown: for patients without a pre-treatment PET scan or if the pre-treatment PET was negative, there must be no change in the size of the previous lesions on the post-treatment CT scan.

Relapsed Disease (after CR)/ Progressive Disease (after PR or SD)

1. Lymph nodes should be considered abnormal if the long axis is more than 1.5 cm regardless of the short axis. If a lymph node has a long axis of 1.1 to 1.5 cm, it should only be considered abnormal if its short axis is more than 1.0. Lymph nodes ≤1.0 x 1.0 cm will not be considered as abnormal for relapse or progressive disease.

2. Appearance of any new lesion more than 1.5 cm in any axis during or at the end of therapy, even if other lesions are decreasing in size. Increased FDG uptake in a previously unaffected site should only be considered relapsed or progressive disease after confirmation with other modalities. In patients with no prior history of pulmonary lymphoma, new lung nodules identified by CT are mostly benign. Thus, a therapeutic decision should not be made solely on the basis of the PET without histologic confirmation.

3. At least a 50% increase from nadir in the SPD of any previously involved nodes, or in a single involved node, or the size of other lesions (e.g., splenic or hepatic nodules). To be considered
progressive disease, a lymph node with a diameter of the short axis of less than 1.0 cm must increase by $\geq 50\%$ and to a size of 1.5 x 1.5 cm or more than 1.5 cm in the long axis.

4. At least a 50% increase in the longest diameter of any single previously identified node more than 1 cm in its short axis.

5. Lesions should be PET positive if observed in a typical FDG-avid lymphoma or the lesion was PET positive before therapy unless the lesion is too small to be detected with current PET systems (<1.5 cm in its long axis by CT).

6. Measurable extranodal disease should be assessed in a manner similar to that for nodal disease. For these recommendations, the spleen is considered nodal disease. Disease that is only assessable (e.g., pleural effusions, bone lesions) will be recorded as present or absent only, unless, while an abnormality is still noted by imaging studies or physical examination, it is found to be histologically negative.

7. In clinical trials where PET is unavailable to the vast majority of participants, or where PET is not deemed necessary or appropriate for use (e.g., a trial in patients with MALT lymphoma), response should be assessed as above, but only using CT scans. However, residual masses should not be assigned CRu status, but should be considered partial responses.
<table>
<thead>
<tr>
<th>Response and site</th>
<th>PET-CT-Based Response</th>
<th>CT-Based Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
<td>Complete metabolic response
Score 1,2, or 3* with or without a residual mass on 5Pi
It is recognized that in Waldeyer’s ring or extranodal sites with high physiologic uptake or with activation within spleen or marrow (eg. with chemotherapy or myeloid colony-stimulating factors), uptake may be greater than normal mediastinum and/or liver. In this circumstance, complete metabolic response may be inferred if uptake at sites of initial involvement is no greater than surrounding normal tissue even if the tissue has high physiologic uptake. Not applicable
Not applicable
None
No evidence of FDG-avid disease in marrow</td>
<td>Complete radiologic response (all of the following)
Target nodes/nodal masses must regress to ≤ 1.5 cm in LDi
No extralymphatic sites of disease
Absent
Regress to normal
None
Normal by morphology; if indeterminate, IHC negative</td>
</tr>
<tr>
<td>Partial</td>
<td>Partial metabolic response
Score 4 or 5 I with reduced uptake compared with baseline and residual masses(es) of any size
At interim, these findings suggest responding disease
At end of treatment, findings indicate residual disease</td>
<td>Partial remission (all of the following)
≥ 50% decrease in SPD of up to 6 target measurable nodes and extranodal sites
When a lesion is too small to measure on CT, assign 5 mm × 5 mm as the default value
When no longer visible, 0 × 0 mm
For a node > 5 mm × 5 mm, but smaller than normal, use actual measurement for calculation
Absent/normal, regressed, but no increase
Spleen must have regressed by > 50% in length beyond normal
None
Not applicable</td>
</tr>
<tr>
<td>No response or stable disease</td>
<td>No metabolic response
Score 4 or 5 with no significant change in FDG uptake from baseline at interim or end of treatment
Not applicable
Not applicable
None
No change from baseline</td>
<td>Stable disease
< 50% decrease from baseline in SPD of up to 6 dominant, measurable nodes and extranodal sites; no criteria for progressive disease are met
No increase consistent with progression
No increase consistent with progression
None
Not applicable</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>Progressive metabolic disease
Score 4 or 5 with an increase in intensity of uptake from baseline and/or
New FDG-avid foci consistent with lymphoma at interim or end-of-treatment assessment</td>
<td>Progressive disease requires at least 1 of the following PPD progression:
An individual node/lesion must be abnormal with: LDi > 1.5 cm and
Increase by ≥50% from PPD nadir and
An increase in LDi or SDi from nadir
0.5 cm for lesions ≤ 2 cm
1.0 cm for lesions > 2 cm
In the setting of splenomegaly, the splenic length must increase by > 50% of the extent of its prior increase beyond baseline (eg. a 15 cm spleen mist increase to > 16 cm). If no prior splenomegaly, must increase by at least 2 cm from baseline
New or recurrent splenomegaly
New or clear progression of preexisting nonmeasured lesions</td>
</tr>
<tr>
<td>Individual target nodes/nodal masses</td>
<td>Nonmeasured lesions</td>
<td>None</td>
</tr>
<tr>
<td>Response and site</td>
<td>PET-CT-Based Response</td>
<td>CT-Based Response</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>New lesions</td>
<td>New FDG-avid foci consistent with lymphoma rather than another etiology (e.g. Infection, inflammation). If uncertain regarding etiology or new lesions, biopsy or interval scan may be considered</td>
<td>Regrowth of previously resolved lesions A new node > 1.5 cm in any axis A new extranodal site > 1.0 cm in any axis; if < 1.0 cm in any axis, its presence must be unequivocal and must be attributable to lymphoma Assessable disease of any size unequivocally attributable to lymphoma New or recurrent involvement</td>
</tr>
<tr>
<td>Bone Marrow</td>
<td>New or recurrent FDG-avid foci</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: 5PS, 5-point scale; CT, computed tomography; FDG, fluorodeoxyglucose; IHC immunohistochemistry; LDi, longest transverse diameter of a lesion; MRI, magnetic resonance imaging; PET, positron emission tomography; PPD, cross product of the LDi and perpendicular diameter; SDi, shortest axis perpendicular to the LDi; SPD, sum of the product of the perpendicular diameters for multiple lesions.

* A score of 3 in many patients indicates a good prognosis with standard treatment, especially if at the time of an interim scan. However, in trials involving PET where de-escalation is investigated, it may be preferable to consider a score of 3 as inadequate response (to avoid undertreatment). Measured dominant lesions: Up to six of the largest dominant nodes, nodal masses, and extranodal lesions selected to be clearly measurable in two diameters. Nodes should preferably be from disparate regions of the body and should include, where applicable, mediastinal and retroperitoneal areas. Non-nodal lesions include those in solid organs (e.g. liver, spleen, kidneys, lungs), GI involvement, cutaneous lesions, or those noted on palpation. Nonmeasured lesions: Any disease not selected as measured, dominant disease and truly assessable disease should be considered not measured. These sites include any nodes, nodal masses, as truly assessable disease, which is any site of suspected disease that would be difficult to follow quantitatively with measurement, including pleural effusions, ascites, bone lesions, leptomeningeal disease, abdominal masses, and other lesions that cannot be confirmed and followed by imaging. In Waldeyer’s ring or in extranodal sites (e.g. GI tract, liver, bone, marrow), FDG uptake may be greater than in the mediastinum with complete metabolic response, but should be no higher than surrounding normal physiologic uptake (e.g. with marrow activation as a result of chemotherapy or myeloid growth factors). PET 5PS: 1, no uptake above background; 2, uptake ≤ mediastinum; 3, uptake > mediastinum but ≤ liver; 4, uptake moderately > liver; 5, uptake markedly higher than liver and/or new lesions; X, new areas of uptake unlikely to be related to lymphoma.
Appendix E: New Lymphoma Patient Data Sheet

Identification:

Name ___________________________ DOB (d/m/y) ______________________
AHN ___________________________ ACB# ___________________________
Gender: male female Age at Diagnosis ___________________________

Diagnostic Information:

Date Diagnosis (d/m/y) ___________________________ Surgical accession # _______________
Biopsy type: open surgical core needle fine needle bone marrow blood
Diagnosis: ___________________________

Stage: I II III IV B sx: yes no Bulk>10cm: yes no
Marrow +ve: yes no Other Extranodal Sites: ___________________________
LDH elevated: yes no ECOG Status: 0 1 2 3 4

Prognosis Score by Histology:

Large Cell Lymphoma: # IPI Factors: 0 1 2 3 4 5
Circle if present: Age > 60yr Stage III/IV LDH>ULN ECOG 2-4 >2 Extranodal Sites

Follicular: # FLIPI Factors: 0 1 2 3 4 5
Circle if present: Age > 60yr Stage III/IV LDH>ULN Hb<120g/L >5 Nodal Sites

Hodgkin: # IPS Factors: 0 1 2 3 4 5 6 7
Circle if present: Age > 45 yr Stage IV Male Lymphocyte<0.6 (or < 8%WBC) Albumin < 40 g/L
Hb < 105g/L WBC > 15

Initial Treatment:

<table>
<thead>
<tr>
<th>Therapy</th>
<th>Plan</th>
<th>Regimen / Radiation Site</th>
<th>Start Date d/m/y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemotherapy</td>
<td>yes</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Maintenance Rituximab</td>
<td>yes</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Radiotherapy</td>
<td>yes</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Stem Cell Transplant</td>
<td>yes</td>
<td>no</td>
<td></td>
</tr>
</tbody>
</table>

First Relapse Information:

Relapse/progression after treatment 1: yes no Date relapse (d/m/y) _______________

2nd Treatment: Regimen _______________ Radiation yes no HDCT/ASCT yes no

Survival Information:

Dead: yes no Date death or last follow-up (d/m/y) _______________
Cause of death: lymphoma other (specify) _______________
Ann Arbor Staging Nodal Sites

Diffuse Large B-Cell Lymphoma Following R-CHOP Chemotherapy

Factors:
- Age > 60yr #Factors %pts 4yr PFS
- ECOG 2-4 0 11 95%
- Stage III/IV 1-2 48 80%
- ENS > 1 3-5 41 55%
- ↑ LDH

FLIPI (Follicular Lymphoma International Prognostic Index)

Factors Survival with Non-Rituximab Containing Therapy
- Age > 60yrs Prognosis # %pt 5yr 10yr
- Stage 3-4 Good 0-1 36 90% 70%
- Increased LDH Intermed 2 37 75% 50%
- Hb < 120g/l Poor 3-5 27 50% 35%
- 5+ nodal sites

Primary CNS lymphoma Prognostic Index

Overall Survival Failure-Free Survival
Adverse Factors mOS 5yr OS mFFS 5yr FFS
Age < 50 yrs 5-8 yrs 50-60% 2-5yrs 35-40%
Age > 50 yrs KPS > 70% 2-3 yrs 15-35% 1.5 yrs 10-20%
Age > 50 yrs KPS < 70% 1 yr 10% 0.5-1yr 5-10%

Hodgkin Lymphoma International Prognostic Score for Advanced Stage Disease

Ann Arbor Staging System

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Single lymph node region (I) or one extralymphatic organ (IE)</td>
</tr>
<tr>
<td>II</td>
<td>>2 lymph node regions (II) or local extralymphatic extension plus lymph nodes (IIE), same side of diaphragm.</td>
</tr>
<tr>
<td>III</td>
<td>Lymph node regions both sides of diaphragm, either alone (III) or with local extralymphatic extension (IIIE)</td>
</tr>
<tr>
<td>IV</td>
<td>Diffuse involvement of one or more extralymphatic organs or sites.</td>
</tr>
</tbody>
</table>

ECOG Performance Status

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Fully active, able to carry on all pre-disease activities without restriction</td>
</tr>
<tr>
<td>1</td>
<td>Restricted in physically strenuous activity but ambulatory and able to carry out work of a light or sedentary nature.</td>
</tr>
<tr>
<td>2</td>
<td>Ambulatory, capable of all self-care but unable to carry out any work activities. Up and about >50% waking hours.</td>
</tr>
<tr>
<td>3</td>
<td>Capable of only limited self-care. Confined to bed or chair more than 50% of waking hours.</td>
</tr>
<tr>
<td>4</td>
<td>Completely disabled. Cannot carry on any self-care. Totally confined to bed or chair.</td>
</tr>
</tbody>
</table>
Appendix F: Ideal Body Weight

<table>
<thead>
<tr>
<th>Height (cm)</th>
<th>Males – Weight (kg)</th>
<th>Females – Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small Frame</td>
<td>Medium Frame</td>
</tr>
<tr>
<td>145</td>
<td>47.1</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>47.3</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>47.6</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>47.9</td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>48.2</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>48.5</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>48.9</td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>49.3</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>49.8</td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>50.3</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>57.3</td>
<td>59.6</td>
</tr>
<tr>
<td>156</td>
<td>57.7</td>
<td>59.9</td>
</tr>
<tr>
<td>157</td>
<td>58.0</td>
<td>60.3</td>
</tr>
<tr>
<td>158</td>
<td>58.4</td>
<td>60.7</td>
</tr>
<tr>
<td>159</td>
<td>58.8</td>
<td>61.0</td>
</tr>
<tr>
<td>160</td>
<td>59.1</td>
<td>61.4</td>
</tr>
<tr>
<td>161</td>
<td>59.5</td>
<td>61.8</td>
</tr>
<tr>
<td>162</td>
<td>59.8</td>
<td>62.2</td>
</tr>
<tr>
<td>163</td>
<td>60.2</td>
<td>62.7</td>
</tr>
<tr>
<td>164</td>
<td>60.5</td>
<td>63.1</td>
</tr>
<tr>
<td>165</td>
<td>60.9</td>
<td>63.6</td>
</tr>
<tr>
<td>166</td>
<td>61.3</td>
<td>64.1</td>
</tr>
<tr>
<td>167</td>
<td>61.7</td>
<td>64.6</td>
</tr>
<tr>
<td>168</td>
<td>62.2</td>
<td>65.2</td>
</tr>
<tr>
<td>169</td>
<td>62.6</td>
<td>65.7</td>
</tr>
<tr>
<td>170</td>
<td>63.1</td>
<td>66.3</td>
</tr>
<tr>
<td>171</td>
<td>63.5</td>
<td>66.8</td>
</tr>
<tr>
<td>172</td>
<td>64.0</td>
<td>67.3</td>
</tr>
<tr>
<td>173</td>
<td>64.4</td>
<td>67.8</td>
</tr>
<tr>
<td>174</td>
<td>64.9</td>
<td>68.4</td>
</tr>
<tr>
<td>175</td>
<td>65.3</td>
<td>68.9</td>
</tr>
<tr>
<td>176</td>
<td>65.7</td>
<td>69.5</td>
</tr>
<tr>
<td>177</td>
<td>66.2</td>
<td>70.0</td>
</tr>
<tr>
<td>178</td>
<td>66.7</td>
<td>70.6</td>
</tr>
<tr>
<td>179</td>
<td>67.2</td>
<td>71.2</td>
</tr>
<tr>
<td>180</td>
<td>67.8</td>
<td>71.8</td>
</tr>
<tr>
<td>181</td>
<td>68.4</td>
<td>72.4</td>
</tr>
<tr>
<td>182</td>
<td>69.0</td>
<td>73.1</td>
</tr>
<tr>
<td>183</td>
<td>69.6</td>
<td>73.7</td>
</tr>
<tr>
<td>184</td>
<td>70.2</td>
<td>74.4</td>
</tr>
<tr>
<td>185</td>
<td>70.8</td>
<td>75.2</td>
</tr>
<tr>
<td>186</td>
<td>71.4</td>
<td>75.8</td>
</tr>
<tr>
<td>187</td>
<td>72.1</td>
<td>76.4</td>
</tr>
<tr>
<td>188</td>
<td>72.7</td>
<td>77.0</td>
</tr>
<tr>
<td>189</td>
<td>73.4</td>
<td>77.8</td>
</tr>
<tr>
<td>190</td>
<td>74.1</td>
<td>78.7</td>
</tr>
<tr>
<td>191</td>
<td>74.8</td>
<td>79.5</td>
</tr>
</tbody>
</table>
References

Development and Revision History
This guideline was reviewed and endorsed by the Alberta Provincial Hematology Tumour Team. Members include hematologists, medical oncologists, radiation oncologists, surgical oncologists, nurses, nurse-practitioners, hematopathologists, and pharmacists. Evidence was selected and reviewed by a working group comprised of members from the Alberta Provincial Hematology Tumour Team, external participants identified by the Working Group Lead, and a methodologist from the Guideline Resource Unit. A detailed description of the methodology followed during the guideline development process can be found in the Guideline Resource Unit Handbook.

Maintenance
A formal review of the guideline will be conducted in 2022. If critical new evidence is brought forward before that time, however, the guideline working group members will revise and update the document accordingly.

Abbreviations
2-CDA, 2-chlorodeoxyadenosine; ABVD, Adriamycin + bleomycin + vinblastine + dacarbazine; ALCCL, anaplastic large cell lymphoma; ALK, anaplastic lymphoma kinase (test); ALL, acute lymphoblastic leukemia; ALT, alanine transaminase (test); AML, acute myeloid leukemia; ATCL, adult T-cell lymphoma; BCNU, carmustine; BEACOPP, bleomycin + etoposide + adriamycin + cyclophosphamide + vincristine + procarbazine + prednisone; BEAM, BCNU + etoposide + cytarabine + melphalan; BL, Burkitt lymphoma; BMT, bone marrow transplant; B-R, Bendamustine-rituximab; CALGB, Cancer and Leukemia Group B; CAP, cyclophosphamide + adriamycin + prednisone; CBV, cyclophosphamide + BCNU + etoposide; CEC, cyclophosphamide + lomustine + vindesine + melphalan + prednisone + epirubicin + vincristine + procarbazine + vinblastine + bleomycin; CEPP, cyclophosphamide + etoposide + procarbazine + prednisone; ChlVPP, chlorambucil + vinblastine + procarbazine + prednisone; CHOPEP, cyclophosphamide + adriamycin + vincristine + prednisone; CICEP, cyclophosphamide + adriamycin + vincristine + etoposide + prednisone; CL, chronic lymphocytic leukemia; CMED, cyclophosphamide + etoposide + methotrexate + dexamethasone + leucovorin; G-CSF; CNS, central nervous system; CODOX-M, cyclophosphamide + vincristine + adriamycin + methotrexate; COPP, cyclophosphamide + vincristine + procarbazine + prednisone; CR, complete remission; CS, clinical stage; CSF, cerebrospinal fluid; CT, computed tomography scan; CTCL, cutaneous T-cell lymphoma; CVAD, cyclophosphamide + vincristine + adriamycin + dexamethasone; CVP, cyclophosphamide + vincristine + prednisone; DHAP, dexamethasone + cytarabine + cisplatin; DICE, dexamethasone + ifosfamide + cisplatin + etoposide + mesna; DICEP, dexamethasone + cyclophosphamide + etoposide + cisplatin + mesna + Sepran; DLBCL, diffuse large B-cell lymphoma; DLCO, diffusing capacity of the lung for carbon monoxide; EBER, Epstein-Barr virus encoded ribonucleic acid; EBV, Epstein-Barr virus; ECOG, Eastern Cooperative Oncology Group; ENS,extracapsular neoplastic spread; ENT, ear, nose, and throat; ESHAP, etoposide + methylprednisolone + cytarabine + cisplatin; ESR, erythrocyte sedimentation rate; FC, fludarabine + cyclophosphamide; FEV1, forced expiratory volume in one second; FISH, fluorescent in situ hybridization; FLIPI, Follicular Lymphoma International Prognostic Index; FND, fludarabine + mitoxantrone + dexamethasone; FVC, forced vital capacity; G-CSF, granulocyte-colony stimulating factor; GDP, gemcitabine + dexamethasone + cisplatin; GHSG, German Hodgkin Study Group; GMALL, German multicentre adult acute lymphoblastic leukemia protocol; H&E, hematoxylin and eosin stain; HAART, highly active antiretroviral therapy; HAMA, human anti-mouse antibodies; HDCT, high dose chemotherapy; HL, Hodgkin lymphoma; HP-Pac, lansoprazole + clarithromycin + amoxicillin; HSCT, hematopoietic stem cell transplantation; HVS, hyperviscosity syndrome; ICE, ifosfamide + carboplatin + etoposide; IELSG, International Extranodal Lymphoma Study Group; IFRT, involved field radiation therapy; IMRT, intensity-modulated radiation therapy; IPS/IPS, International Prognostic Index/Score; IV, intravenous; IVAC, ifosfamide + mesna + etoposide + cytarabine; IVE, ifosfamide + vincristine + etoposide; KPS, Karnofsky Performance Status Scale; LDH, lactate dehydrogenase test; LPL, lymphoplasmacytic lymphoma; LVEF, left ventricular ejection fraction; MACOP-B, methotrexate + adriamycin + cyclophosphamide + vincristine + bleomycin + prednisone; MALT, mucosa-associated lymphoid tissue; MDS, myelodysplastic syndrome; MEP, mitomycin C + etoposide + cisplatin; MTX, maximum transthoracic diameter; MTX, methotrexate; MUGA, multiple gated acquisition scan; NHL, non-Hodgkin lymphoma; NK, natural killer; NLPHD, nodular lymphocyte predominant Hodgkin disease; OS, overall survival; PCNSL, primary central nervous system lymphoma; PCP, Pneumocystis jiroveci pneumonia; PET, positron emission tomography; PFS, progression-free survival; PFT, pulmonary function test; POMP, mercaptopurine + vincristine + methotrexate + prednisone; PR, partial response; PTCL, peripheral T-cell lymphoma; PTLD, post-transplant lymphoproliferative disorder; PUVA, psoralen + ultraviolet A radiation; R, rituximab; R-
CHOP, rituximab + cyclophosphamide + adriamycin + vincristine + prednisone; R-CVP, rituximab + cyclophosphamide + vincristine + prednisone; R-FCM, fludarabine + cyclophosphamide + mitoxantrone + rituximab; RIT, radioimmunoconjugate therapy; RR, response rate; RT, radiotherapy; SBFT, small bowel follow-through (test); SCT, stem cell transplant; SD, stable disease; SLE, systemic lupus erythematosus; SLL, small lymphocytic lymphoma; SOT, solid organ transplant; STNI, subtotal nodal irradiation; TBuC, thiotepa + busulfan + cyclophosphamide; TBI, total body irradiation; TRM, Transplant-related mortality; TSH, thyroid stimulating hormone; UGI, upper gastrointestinal series (test); VIPD, etoposide + ifosfamide + cisplatin + dexamethasone; WHO, World Health Organization; WM, Waldenström macroglobulinemia.

Disclaimer The recommendations contained in this guideline are a consensus of the Alberta Hematology Tumour Team and are a synthesis of currently accepted approaches to management, derived from a review of relevant scientific literature. Clinicians applying these guidelines should, in consultation with the patient, use independent medical judgment in the context of individual clinical circumstances to direct care.

Copyright © (2021) Alberta Health Services
This copyright work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivative 4.0 International license. You are free to copy and distribute the work including in other media and formats for non-commercial purposes, as long as you attribute the work to Alberta Health Services, do not adapt the work, and abide by the other license terms. To view a copy of this license, see https://creativecommons.org/licenses/by-nc-nd/4.0/.
The license does not apply to AHS trademarks, logos or content for which Alberta Health Services is not the copyright owner.

Funding Source
Financial support for the development of CancerCare Alberta’s evidence-based clinical practice guidelines and supporting materials comes from the CancerCare Alberta operating budget; no outside commercial funding was received to support the development of this document. All cancer drugs described in the guidelines are funded in accordance with the Outpatient Cancer Drug Benefit Program, at no charge, to eligible residents of Alberta, unless otherwise explicitly stated. For a complete list of funded drugs, specific indications, and approved prescribers, please refer to the Outpatient Cancer Drug Benefit Program Master List.