Pediatric Cancer Next Generation Sequencing (NGS) Panel:
Information for Ordering Providers

What is Next Generation Sequencing (NGS)?
NGS is a high-throughput DNA sequencing technology that allows sequencing of multiple regions of the human genome at one time. This enables the simultaneous analysis of many genes known to be associated with a particular phenotype (i.e. gene panels). For some genes, additional analysis for copy number variants may be performed in conjunction with NGS.

Since not all genes associated with a given phenotype/presentation are known or included in the panel, a pathogenic variant will not be identified for every patient. **The absence of a pathogenic variant does not exclude a clinical diagnosis.**

Testing may identify a genetic variant for which there is currently insufficient evidence to conclude that it is either disease-causing or benign (called a variant of uncertain significance). Such variants cannot be used to alter the clinically established risk of disease.

Why order a NGS panel for my patient?
Phenotypes are often genetically heterogeneous, meaning that the condition is caused by a pathogenic variant(s) in any one of a number of genes. Instead of sequentially testing each of those genes, patients with a particular phenotype should be offered a targeted NGS panel. In some circumstances, it may be more appropriate to test only one gene instead of a panel of genes. In such situations, please contact the laboratory to discuss your patient.

Individuals who carry a pathogenic variant in a hereditary cancer gene have an increased risk of certain cancers compared to the general population. Cancer risks depend on the gene(s) in which the variant(s) is identified. These individuals are eligible for increased cancer screening and/or risk reducing surgeries and therapeutic interventions. In addition, results may influence treatment plans for individuals with cancer.

Background
The majority of pediatric cancers are sporadic; however, 5%-10% are thought to be due to a hereditary predisposition. The disorders represented on this panel are typically de novo or inherited in an autosomal dominant fashion, with the exception of mosaic variegated aneuploidy syndrome (autosomal recessive inheritance).

Associated Disorders
Some of the genes on this panel are associated with other rare disorders including:

- **Congenital central hypoventilation syndrome** (CCHS) is an autosomal recessive disorder caused by pathogenic variants in PHOX2B. It is a disorder of respiratory and autonomic regulation and most commonly presents in the newborn period with a classic presentation, however, it can present more mildly at later ages.

- **Schwannomatosis** is an autosomal dominant disorder characterized by multiple schwannomas without the vestibular schwannomas diagnostic of neurofibromatosis type 2. Pathogenic variants in SMARCB1 are responsible for 30-60% of familial schwannomatosis but only a small percentage of isolated cases.

Pathogenic variants in **PTCH1** have been described in some individuals with holoprosencephaly and microcephaly.
If a pathogenic variant is identified in one of the above genes, the patient and/or their family members may be at increased risk for specific cancers and / or genetic conditions. Genetic counselling is recommended for these families.

Indications for Testing
Patients presenting with features suggestive of one of the above conditions are eligible for testing.

Ordering privileges
This panel may be ordered by Clinical Geneticists.

Pediatric cancer NGS panel
The genes included in this panel may be associated with a spectrum of cancer types or a well-described hereditary cancer condition. The associated cancer risks depend on the gene in which the variant is identified.

<table>
<thead>
<tr>
<th>Gene(s)</th>
<th>Associated cancers and/or clinical features</th>
<th>Associated Hereditary Syndrome(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALK, PHOX2B</td>
<td>Susceptibility to neuroblastoma, increased risk for other cancers</td>
<td>Hereditary neuroblastoma</td>
</tr>
<tr>
<td>APC</td>
<td>Colonic polyps, colon cancer, hepatoblastoma</td>
<td>APC-associated polyposis conditions</td>
</tr>
<tr>
<td>BUB1B, CEP57</td>
<td>Intrauterine growth restriction, intellectual disabilities, CNS anomalies and cancer predisposition such as Wilms tumor, rhabdomyosarcoma and leukemia</td>
<td>Mosaic variegated aneuploidy syndrome (types 1 & 2)</td>
</tr>
<tr>
<td>CDKN1C</td>
<td>Neonatal hypoglycemia, macrosomia, macroglossia, hemihyperplasia, omphalocele, embryonal tumors, visceromegaly, renal anomalies and ear creases / pits</td>
<td>Beckwith-Wiedemann syndrome</td>
</tr>
<tr>
<td></td>
<td>Of note: If a patient is suspected of having BWS, the first line test should be assessment for uniparental disomy of 11p15 or abnormal methylation or deletions of this region, with reflex to CDKN1C sanger sequencing. This testing is available through the Calgary Molecular Diagnostic Lab.</td>
<td></td>
</tr>
<tr>
<td>DICER1</td>
<td>A tumor susceptibility syndrome that confers an increased risk for pleuropulmonary blastoma (most commonly), ovarian sex cord-stromal tumors, juvenile granulosa cell tumor and thyroid gland neoplasia</td>
<td>DICER1-related disorders</td>
</tr>
<tr>
<td>PTCH1, SUFU</td>
<td>Multiple jaw keratocysts and/or basal cell carcinoma, characteristic facial appearance (~60%), skeletal anomalies, medulloblastoma</td>
<td>Nevoid Basal Cell Carcinoma syndrome</td>
</tr>
<tr>
<td>SMARCB1</td>
<td>Susceptibility to rhabdoid tumors, onset is typically around 6 months of age</td>
<td>Rhabdoid tumor predisposition syndrome</td>
</tr>
<tr>
<td>TP53</td>
<td>Lifetime risk of 68%-93% to develop cancer. The most common tumor types include soft tissue, osteosarcomas, breast cancer and brain cancer</td>
<td>Li-Fraumeni syndrome</td>
</tr>
<tr>
<td>WT1</td>
<td>Genital anomalies, cardiac malformations, Wilms tumor and renal disease.</td>
<td>Denys-Drash syndrome Frasier syndrome Meacham syndrome</td>
</tr>
<tr>
<td></td>
<td>Wilms tumor, anirida, genitourinary anomalies, intellectual disability</td>
<td>WAGR</td>
</tr>
<tr>
<td></td>
<td>Susceptibility to Wilms tumor</td>
<td></td>
</tr>
</tbody>
</table>
How do I order an NGS panel?
Discuss the advantages and limitations of testing with your patient (see above). If your patient consents to
the testing:

1. Complete the Molecular Diagnostic Laboratory Cancer and Endocrine Next Generation Sequencing
 Requisition (available at www.albertahealthservices.ca/lab/page8667.aspx) providing all relevant
 clinical and family history information. Incomplete requisitions will not be accepted and will
 result in test delays.
2. Provide the fully completed requisition to your patient and direct them to their local collection lab for
 a blood draw.
3. For patients without a valid Alberta PHN, please contact the laboratory genetic counsellor to discuss
 test availability, billing and sample requirements.

My patient has a family history of a known pathogenic variant. Is an NGS panel the appropriate test for my
patient?
No. Once a pathogenic variant has been identified in the family it is best to begin testing by looking for the variant
that has already been identified in the family.

Methods
Genomic DNA is sequenced on an NGS instrument. Analysis includes the coding region of the gene, including 15bp
of intronic/coding boundaries. If a clinically relevant variant does not meet the validation requirements it is
confirmed by Sanger sequencing. Additional deletion/duplication testing may be performed by a variety of
methods, including, but not limited to: comparative genomic hybridization, NGS-based dosage analysis, multiplex
ligation-dependent probe amplification, and quantitative PCR. Confirmation by a secondary method is carried out
when necessary. The methods used to generate results are identified on each patient report.

Test Performance
NGS detects nucleotide substitutions, small insertions and deletions and copy number variants. This test is
expected to detect >95% of variants in the coding regions of the tested genes.

When can I expect results?
Results may take up to 4 months.

Can testing be expedited to facilitate medical management of a patient?
Expedited testing (~1 month from the time the sample is received) is available if required for immediate surgical or
therapeutic management. Please provide details on the requisition form regarding the reason for expedited testing
as well as a target date for results.

How are results reported?
Results are sent to the ordering provider. For some tests, results will not be sent to 'copy to' physicians by the
laboratory, but may be obtained by contacting the ordering health care provider.
What Types of Results Can I Expect?

<table>
<thead>
<tr>
<th>Type of NGS result</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathogenic Variant</td>
<td>A variant has been identified that is disease-causing.</td>
</tr>
<tr>
<td>Likely Pathogenic Variant</td>
<td>A variant has been identified and there is significant but not conclusive evidence that the variant is disease-causing. As per the ACMG guidelines, this denotes a >90% certainty of pathogenicity.</td>
</tr>
<tr>
<td>Variant of Uncertain Significance</td>
<td>A variant has been identified and there is not sufficient evidence to classify the variant as pathogenic/likely pathogenic or benign/likely benign.</td>
</tr>
<tr>
<td>No Pathogenic Variant (Uninformative)</td>
<td>No variants of clinical or uncertain significance were detected. This is an uninformative result and no explanation has been identified for the patient’s phenotype. There may be other genes or variants not assessed by the current NGS panel associated with the patient’s phenotype. A genetic condition or genetic component to the phenotype has not been excluded.</td>
</tr>
</tbody>
</table>

NOTE: Benign, or likely benign variants (variants known not to be disease-causing) are not reported.

My patient has a variant. What are the next steps?
Your patient should be managed based on their diagnosis and clinical presentation. If your patient has a pathogenic variant or a likely pathogenic variant, genetic counselling may be indicated to discuss the implications for other family members. If your patient has a variant of uncertain significance, a referral to Clinical Genetics may aid in the assessment of the variant.

My patient’s results are uninformative. What are the next steps?
A referral to Clinical Genetics may still be appropriate for your patient if they have a significant family history suggestive of hereditary cancer syndrome and/or desire additional counselling regarding their results.

I have questions about NGS Panels. Who do I talk to?
Health care providers can contact the Genetic Laboratory Services Genetic Counsellors:
Calgary: 403-955-3097

Requisition forms, contact information and other resources can be found at:
http://www.albertahealthservices.ca/lab/page8667.aspx

References